16 research outputs found

    Retinal vessel segmentation using textons

    Get PDF
    Segmenting vessels from retinal images, like segmentation in many other medical image domains, is a challenging task, as there is no unified way that can be adopted to extract the vessels accurately. However, it is the most critical stage in automatic assessment of various forms of diseases (e.g. Glaucoma, Age-related macular degeneration, diabetic retinopathy and cardiovascular diseases etc.). Our research aims to investigate retinal image segmentation approaches based on textons as they provide a compact description of texture that can be learnt from a training set. This thesis presents a brief review of those diseases and also includes their current situations, future trends and techniques used for their automatic diagnosis in routine clinical applications. The importance of retinal vessel segmentation is particularly emphasized in such applications. An extensive review of previous work on retinal vessel segmentation and salient texture analysis methods is presented. Five automatic retinal vessel segmentation methods are proposed in this thesis. The first method focuses on addressing the problem of removing pathological anomalies (Drusen, exudates) for retinal vessel segmentation, which have been identified by other researchers as a problem and a common source of error. The results show that the modified method shows some improvement compared to a previously published method. The second novel supervised segmentation method employs textons. We propose a new filter bank (MR11) that includes bar detectors for vascular feature extraction and other kernels to detect edges and photometric variations in the image. The k-means clustering algorithm is adopted for texton generation based on the vessel and non-vessel elements which are identified by ground truth. The third improved supervised method is developed based on the second one, in which textons are generated by k-means clustering and texton maps representing vessels are derived by back projecting pixel clusters onto hand labelled ground truth. A further step is implemented to ensure that the best combinations of textons are represented in the map and subsequently used to identify vessels in the test set. The experimental results on two benchmark datasets show that our proposed method performs well compared to other published work and the results of human experts. A further test of our system on an independent set of optical fundus images verified its consistent performance. The statistical analysis on experimental results also reveals that it is possible to train unified textons for retinal vessel segmentation. In the fourth method a novel scheme using Gabor filter bank for vessel feature extraction is proposed. The ii method is inspired by the human visual system. Machine learning is used to optimize the Gabor filter parameters. The experimental results demonstrate that our method significantly enhances the true positive rate while maintaining a level of specificity that is comparable with other approaches. Finally, we proposed a new unsupervised texton based retinal vessel segmentation method using derivative of SIFT and multi-scale Gabor filers. The lack of sufficient quantities of hand labelled ground truth and the high level of variability in ground truth labels amongst experts provides the motivation for this approach. The evaluation results reveal that our unsupervised segmentation method is comparable with the best other supervised methods and other best state of the art methods

    Classification of visualization exudates fundus images results using support vector machine

    Get PDF
    This paper classifies the characteristics of normal and exudates fundus images by determine its accuracy for diagnostic purposes. Image normalization was performed on 149 fundus images (81 normal and 68 exudates) from MESSIDOR databases to standardize the colours in the fundus images. The OD removed fundus image and fundus image with the exudates areas removed. The SVM1 classifier was applied to 30 test fundus images to determine the best optimal parameter. The kernel function settings; linear, polynomial, quadratic and RBF have an effect on the classification results. For SVM1, the best parameter in classifying pixels is linear kernel function. The visualization results using CAC and radar chart are classified using ts accuracy. It has proven to discriminated exudates and non exudates pixels in fundus image using linear kernel function of SVM1 to diagnose DR.Keywords: Diabetic retinopathy (DR); Optic disc (OD); Support Vector Machine (SVM); AC); Radial Basis Function (RBF)

    Detection of pathologies in retina digital images an empirical mode decomposition approach

    Get PDF
    Accurate automatic detection of pathologies in retina digital images offers a promising approach in clinicalapplications. This thesis employs the discrete wavelet transform (DWT) and empirical mode decomposition (EMD) to extract six statistical textural features from retina digital images. The statistical features are the mean, standard deviation, smoothness, third moment, uniformity, and entropy. The purpose is to classify normal and abnormal images. Five different pathologies are considered. They are Artery sheath (Coat’s disease), blot hemorrhage, retinal degeneration (circinates), age-related macular degeneration (drusens), and diabetic retinopathy (microaneurysms and exudates). Four classifiers are employed; including support vector machines (SVM), quadratic discriminant analysis (QDA), k-nearest neighbor algorithm (k-NN), and probabilistic neural networks (PNN). For each experiment, ten random folds are generated to perform cross-validation tests. In order to assess the performance of the classifiers, the average and standard deviation of the correct recognition rate, sensitivity and specificity are computed for each simulation. The experimental results highlight two main conclusions. First, they show the outstanding performance of EMD over DWT with all classifiers. Second, they demonstrate the superiority of the SVM classifier over QDA, k-NN, and PNN. Finally, principal component analysis (PCA) was employed to reduce the number of features in hope to improve the accuracy of classifiers. We find that there is no general and significant improvement of the performance, however. In sum, the EMD-SVM system provides a promising approach for the detection of pathologies in digital retina

    Automated retinal analysis

    Get PDF
    Diabetes is a chronic disease affecting over 2% of the population in the UK [1]. Long-term complications of diabetes can affect many different systems of the body including the retina of the eye. In the retina, diabetes can lead to a disease called diabetic retinopathy, one of the leading causes of blindness in the working population of industrialised countries. The risk of visual loss from diabetic retinopathy can be reduced if treatment is given at the onset of sight-threatening retinopathy. To detect early indicators of the disease, the UK National Screening Committee have recommended that diabetic patients should receive annual screening by digital colour fundal photography [2]. Manually grading retinal images is a subjective and costly process requiring highly skilled staff. This thesis describes an automated diagnostic system based oil image processing and neural network techniques, which analyses digital fundus images so that early signs of sight threatening retinopathy can be identified. Within retinal analysis this research has concentrated on the development of four algorithms: optic nerve head segmentation, lesion segmentation, image quality assessment and vessel width measurements. This research amalgamated these four algorithms with two existing techniques to form an integrated diagnostic system. The diagnostic system when used as a 'pre-filtering' tool successfully reduced the number of images requiring human grading by 74.3%: this was achieved by identifying and excluding images without sight threatening maculopathy from manual screening

    Softwarová aplikace pro archivaci a analýzu retinálních záznamů

    Get PDF
    There are several diagnostic medical devices for the diagnosis of eye pathologies. therein Retcam may be a fully integrated wide-field digital imaging system for the hospital and clinic. This provides ophthalmic visualization and photo documentation of retinal images. For every examination number of patients are high and therefore the images taken during the examination are more. In order to manage this, I proposed to develop a software application for archiving and analysis of retinal records. This web application connected to a database to save and retrieve patient records and retinal records for further analysis of pathology conditions of the eye are created in order to support the proposal. I’m using SQLite for the database it's linked with a server where the applicant details are received from the patient Form. Retinal images are saved within the system or Centralized Network Access Storage. And therefore, the path of the image is stored in a database for easy retrieving. Retinal images from the retcam are stored in a folder created by an application. Patient form created using Symfony PHP.Existuje několik diagnostických medicínských zařízení s cílem diagnostiky patologií očního systému jako je systém Retcam, který představuje plně integrovaný širokoúhlý zobrazovací systém pro klinické využití. Tento systém poskytuje oftalmologické vizualizace a fotografickou dokumentaci retinálních obrazů. V rámci oftalmologického vyšetření je produkováno větší množství obrazových záznamů, proto je potřeba řešit databázové systémy, kde tyto záznamy budou ukládány a archivovány. Pro tento účel je v rámci této diplomové práce navržena softwarová web aplikace pro archivaci a analýzu retinálních záznamů, která je propojena s retinální databází pro ukládání, správu retinálních obrazů. Je využíváno SQLite pro tvorbu databáze. Retinální obrazy jsou ukládány v rámci sytému, nebo centralizované sítě přístupového sdílení. Retinální obrazy jsou ukládány ve složkách, které definuje aplikace. Pacientské formuláře jsou vytvářeny s využitím nástroje symfony php.450 - Katedra kybernetiky a biomedicínského inženýrstvívýborn

    Advanced image processing techniques for detection and quantification of drusen

    Get PDF
    Dissertation presented to obtain the degree of Doctor of Philosophy in Electrical Engineering, speciality on Perceptional Systems, by the Universidade Nova de Lisboa, Faculty of Sciences and TechnologyDrusen are common features in the ageing macula, caused by accumulation of extracellular materials beneath the retinal surface, visible in retinal fundus images as yellow spots. In the ophthalmologists’ opinion, the evaluation of the total drusen area, in a sequence of images taken during a treatment, will help to understand the disease progression and effectiveness. However, this evaluation is fastidious and difficult to reproduce when performed manually. A literature review on automated drusen detection showed that the works already published were limited to techniques of either adaptive or global thresholds which showed a tendency to produce a significant number of false positives. The purpose for this work was to propose an alternative method to automatically quantify drusen using advanced digital image processing techniques. This methodology is based on a detection and modelling algorithm to automatically quantify drusen. It includes an image pre-processing step to correct the uneven illumination by using smoothing splines fitting and to normalize the contrast. To quantify drusen a detection and modelling algorithm is adopted. The detection uses a new gradient based segmentation algorithm that isolates drusen and provides basic drusen characterization to the modelling stage. These are then fitted by Gaussian functions, to produce a model of the image, which is used to compute the affected areas. To validate the methodology, two software applications, one for semi-automated (MD3RI) and other for automated detection of drusen (AD3RI), were implemented. The first was developed for Ophthalmologists to manually analyse and mark drusen deposits, while the other implemented algorithms for automatic drusen quantification.Four studies to assess the methodology accuracy involving twelve specialists have taken place. These compared the automated method to the specialists and evaluated its repeatability. The studies were analysed regarding several indicators, which were based on the total affected area and on a pixel-to-pixel analysis. Due to the high variability among the graders involved in the first study, a new evaluation method, the Weighed Matching Analysis, was developed to improve the pixel-to-pixel analysis by using the statistical significance of the observations to differentiate positive and negative pixels. From the results of these studies it was concluded that the methodology proposed is capable to automatically measure drusen in an accurate and reproducible process. Also, the thesis proposes new image processing algorithms, for image pre-processing, image segmentation,image modelling and images comparison, which are also applicable to other image processing fields

    Modeling, Pattern Analysis and Feature-Based Retrieval on Retinal Images

    Get PDF
    Inexpensive high quality fundus camera systems enable imaging of retina for vision related health management and diagnosis at large scale. A computer based analysis system can help establish the general baseline of normal conditions vs. anomalous ones, so that different classes of retinal conditions can be classified. Advanced applications, ranging from disease screening algorithms, aging vs. disease trend modeling and prediction, and content-based retrieval systems can be developed. In this dissertation, I propose an analytical framework for the modeling of retina blood vessels to capture their statistical properties, so that based on these properties one can develop blood vessel mapping algorithms with self-optimized parameters. Then, other image objects can be registered based on vascular topology modeling techniques. On the basis of these low level analytical models and algorithms, the third major element of this dissertation is a high level population statistics application, in which texture classification of macular patterns is correlated with vessel structures, which can also be used for retinal image retrieval. The analytical models have been implemented and tested based on various image sources. Some of the algorithms have been used for clinical tests. The major contributions of this dissertation are summarized as follows: (1) A concise, accurate feature representation of retinal blood vessel on retinal images by proposing two feature descriptors Sp and Ep derived from radial contrast transform. (2) A new statistical model of lognormal distribution, which captures the underlying physical property of the levels of generations of the vascular network on retinal images. (3) Fast and accurate detection algorithms for retinal objects, which include retinal blood vessel, macular-fovea area and optic disc, and (4) A novel population statistics based modeling technique for correlation analysis of blood vessels and other image objects that only exhibit subtle texture changes

    Towards Complete Ocular Disease Diagnosis in Color Fundus Image

    Get PDF
    Non-invasive assessment of retinal fundus image is well suited for early detection of ocular disease and is facilitated more by advancements in computed vision and machine learning. Most of the Deep learning based diagnosis system gives just a diagnosis(absence or presence) of a certain number of diseases without hinting the underlying pathological abnormalities. We attempt to extract such pathological markers, as an ophthalmologist would do, in this thesis and pave a way for explainable diagnosis/assistance task. Such abnormalities can be present in various regions of a fundus image including vasculature, Optic Nerve Disc/Cup, or even in non-vascular region. This thesis consist of series of novel techniques starting from robust retinal vessel segmentation, complete vascular topology extraction, and better ArteryVein classification. Finally, we compute two of the most important vascular anomalies-arteryvein ratio and vessel tortuosity. While most of the research focuses on vessel segmentation, and artery-vein classification, we have successfully advanced this line of research one step further. We believe it can be a very valuable framework for future researcher working on automated retinal disease diagnosis

    NON-INVASIVE IMAGE ENHANCEMENT OF COLOUR RETINAL FUNDUS IMAGES FOR A COMPUTERISED DIABETIC RETINOPATHY MONITORING AND GRADING SYSTEM

    Get PDF
    Diabetic Retinopathy (DR) is a sight threatening complication due to diabetes mellitus affecting the retina. The pathologies of DR can be monitored by analysing colour fundus images. However, the low and varied contrast between retinal vessels and the background in colour fundus images remains an impediment to visual analysis in particular in analysing tiny retinal vessels and capillary networks. To circumvent this problem, fundus fluorescein angiography (FF A) that improves the image contrast is used. Unfortunately, it is an invasive procedure (injection of contrast dyes) that leads to other physiological problems and in the worst case may cause death. The objective of this research is to develop a non-invasive digital Image enhancement scheme that can overcome the problem of the varied and low contrast colour fundus images in order that the contrast produced is comparable to the invasive fluorescein method, and without introducing noise or artefacts. The developed image enhancement algorithm (called RETICA) is incorporated into a newly developed computerised DR system (called RETINO) that is capable to monitor and grade DR severity using colour fundus images. RETINO grades DR severity into five stages, namely No DR, Mild Non Proliferative DR (NPDR), Moderate NPDR, Severe NPDR and Proliferative DR (PDR) by enhancing the quality of digital colour fundus image using RETICA in the macular region and analysing the enlargement of the foveal avascular zone (F AZ), a region devoid of retinal vessels in the macular region. The importance of this research is to improve image quality in order to increase the accuracy, sensitivity and specificity of DR diagnosis, and to enable DR grading through either direct observation or computer assisted diagnosis system

    Psychiatric Case Record

    Get PDF
    Bipolar Disorder-Mania: Patient was apparently normal one-month back, Then all of a sudden he developed sleep disturbances –mainly difficult in initiation of sleep. He also started abusing his family members for unwanted things. Subsequently, he started talking excessively and irritable. Sometimes he sings film songs and dances. He used to say that God Supreme exists in himself and so he has all the powers of Almighty. With that superior power he says that he can solve all the problems in this world. He also says that he has invented herbs to keep people young. For the past one week, he talks excessively without having an hour of sleep & wanders here and there & found excessively smoking. He becomes excessively spiritual and goes to near by villages for offering prayers to God. He takes only a little food everyday and he is very much keen in personal cleanliness. Paranoid Schizophrenia: She was apparently normal 8 months back, then she developed sleep disturbances in the form of difficult in falling asleep. She was found talking & smiling to herself at night & day with mirror gazing. She started saying that her neighbour & relatives are planning to kill herself by poisoning. In this context she had frequent quarrels with them and she refused to take food prepared by her mother in law. She left the home at night without informing any one and started wandering in the road side near her home. She was complaining that she hears voices as if her neighbour & relatives were talking about her among themselves She was not doing house hold activities for past 6 months and she was not taking care of her child. Her personal hygiene was very much deteriorated slowly as she used to take bath & brush, only if she was asked to do so. She started abusing & assaulting the strangers and family members. Generalised Anxiety Disorder: Six months back he was apparently normal. He is working as a system analyst in a private bank . He had once, made a mistake in his bank work for which he was given charges by his employer, followed this event he becomes very tense and afraid whenever his boss called him. He is very cautious that he should not commit any mistakes. Even though he is not doing so, he fears that he may commit some mistake in his work. At that moment he develops palpitation, giddiness, breathlessness, excessive sweating over palms and soles. Slowly these symptoms present through out the day even when he was not in his office, and he could not control his fearfulness. For the past 6 months he didn’t sleep well. His sleep is disturbed by bad dreams. Recurrent Depressive Disorder: Patient was apparently alright 2 months back. Then she developed sleep disturbances particularly early morning awakening, she use to wake up by 3.00 am and use to brood about herself and started crying. She was not doing her domestic work as before, as she felt excess tiredness and use to take frequent rests. She developed poor communication. She had lost her interest in pleasurable activities and was not interested in watching TV, and attending family gatherings. She stayed aloof most of the time & calm, quiet and withdrawn. She was expressing her helplessness and hopelessness about the future. She started to have decline in maintaining self care. 15 days back, she frequently expressed suicidal ideas and she had attempted suicide by hanging herself and was rescued by neighbours. 5 days back, she started talking in an irrelevant manner. She was smiling to self. She was assaulting her family members. She was suspicious that her neighbour had done black magic on her and also saying that people are talking about her. She reported hearing the voice of her neighbour scolding and threatening her. Organic Brain Syndrome – Dementia: Ten months back he was apparently alright. Then his relatives noticed himself frequently misplaces things inside his home. Then he started behaving aggressively. He was beating his wife without reason. He was roaming here and there, running out of home and wandering aimlessly. He was not able to come back home when he goes out. He was brought back to home by his relatives. Slowly he developed fearfulness and tremulousness while he was staying alone. He also started saying that his family members & neighbours were talking about himself, in this context he would make frequent quarrels with them. He also started hearing voices of known male voices abusing himself in third person. He sleeps for few hour only. He is passing urine and motion inside the house. He is asking about his brother and mother-in-law who were expired long back. He behaves abnormally such as pouring water in the plate while eating. And his relatives found the symptoms were worsened by evening. All these symptoms started insidiously, increased in severity through time and attained the present state. No history of loss of appetite / crying spells / suicidal tendencies / convulsions / fever / head injury
    corecore