222 research outputs found

    A Theory of Sampling for Continuous-time Metric Temporal Logic

    Full text link
    This paper revisits the classical notion of sampling in the setting of real-time temporal logics for the modeling and analysis of systems. The relationship between the satisfiability of Metric Temporal Logic (MTL) formulas over continuous-time models and over discrete-time models is studied. It is shown to what extent discrete-time sequences obtained by sampling continuous-time signals capture the semantics of MTL formulas over the two time domains. The main results apply to "flat" formulas that do not nest temporal operators and can be applied to the problem of reducing the verification problem for MTL over continuous-time models to the same problem over discrete-time, resulting in an automated partial practically-efficient discretization technique.Comment: Revised version, 43 pages

    Integrated Modeling and Verification of Real-Time Systems through Multiple Paradigms

    Get PDF
    Complex systems typically have many different parts and facets, with different characteristics. In a multi-paradigm approach to modeling, formalisms with different natures are used in combination to describe complementary parts and aspects of the system. This can have a beneficial impact on the modeling activity, as different paradigms an be better suited to describe different aspects of the system. While each paradigm provides a different view on the many facets of the system, it is of paramount importance that a coherent comprehensive model emerges from the combination of the various partial descriptions. In this paper we present a technique to model different aspects of the same system with different formalisms, while keeping the various models tightly integrated with one another. In addition, our approach leverages the flexibility provided by a bounded satisfiability checker to encode the verification problem of the integrated model in the propositional satisfiability (SAT) problem; this allows users to carry out formal verification activities both on the whole model and on parts thereof. The effectiveness of the approach is illustrated through the example of a monitoring system.Comment: 27 page

    Practical Automated Partial Verification of Multi-Paradigm Real-Time Models

    Get PDF
    This article introduces a fully automated verification technique that permits to analyze real-time systems described using a continuous notion of time and a mixture of operational (i.e., automata-based) and descriptive (i.e., logic-based) formalisms. The technique relies on the reduction, under reasonable assumptions, of the continuous-time verification problem to its discrete-time counterpart. This reconciles in a viable and effective way the dense/discrete and operational/descriptive dichotomies that are often encountered in practice when it comes to specifying and analyzing complex critical systems. The article investigates the applicability of the technique through a significant example centered on a communication protocol. More precisely, concurrent runs of the protocol are formalized by parallel instances of a Timed Automaton, while the synchronization rules between these instances are specified through Metric Temporal Logic formulas, thus creating a multi-paradigm model. Verification tests run on this model using a bounded validity checker implementing the technique show consistent results and interesting performances.Comment: 33 pages; fixed a few typos and added data to Table

    Modeling Time in Computing: A Taxonomy and a Comparative Survey

    Full text link
    The increasing relevance of areas such as real-time and embedded systems, pervasive computing, hybrid systems control, and biological and social systems modeling is bringing a growing attention to the temporal aspects of computing, not only in the computer science domain, but also in more traditional fields of engineering. This article surveys various approaches to the formal modeling and analysis of the temporal features of computer-based systems, with a level of detail that is suitable also for non-specialists. In doing so, it provides a unifying framework, rather than just a comprehensive list of formalisms. The paper first lays out some key dimensions along which the various formalisms can be evaluated and compared. Then, a significant sample of formalisms for time modeling in computing are presented and discussed according to these dimensions. The adopted perspective is, to some extent, historical, going from "traditional" models and formalisms to more modern ones.Comment: More typos fixe

    Verifying temporal specifications of Java programs

    Get PDF
    Many Java programs encode temporal behaviors in their source code, typically mixing three features provided by the Java language: (1) pausing the execution for a limited amount of time, (2) waiting for an event that has to occur before a deadline expires, and (3) comparing timestamps. In this work, we show how to exploit modern SMT solvers together with static analysis in order to produce a network of timed automata approximating the temporal behavior of a set of Java threads. We also prove that the presented abstraction preserves the truth of MTL and ATCTL formulae, two well-known logics for expressing timed specifications. As far as we know, this is the first feasible approach enabling the user to automatically model check timed specifications of Java software directly from the source code

    Verifying temporal specifications of Java programs

    Get PDF
    none5Many Java programs encode temporal behaviors in their source code, typically mixing three features provided by the Java language: (1) pausing the execution for a limited amount of time, (2) waiting for an event that has to occur before a deadline expires, and (3) comparing timestamps. In this work, we show how to exploit modern SMT solvers together with static analysis in order to produce a network of timed automata approximating the temporal behavior of a set of Java threads. We also prove that the presented abstraction preserves the truth of MTL and ATCTL formulae, two well-known logics for expressing timed specifications. As far as we know, this is the first feasible approach enabling the user to automatically model check timed specifications of Java software directly from the source code.openSpegni F.; Spalazzi L.; Liva G.; Pinzger M.; Bollin A.Spegni, F.; Spalazzi, L.; Liva, G.; Pinzger, M.; Bollin, A

    Imperial College Computing Student Workshop

    Get PDF

    Model Predictive Control for Signal Temporal Logic Specification

    Get PDF
    We present a mathematical programming-based method for model predictive control of cyber-physical systems subject to signal temporal logic (STL) specifications. We describe the use of STL to specify a wide range of properties of these systems, including safety, response and bounded liveness. For synthesis, we encode STL specifications as mixed integer-linear constraints on the system variables in the optimization problem at each step of a receding horizon control framework. We prove correctness of our algorithms, and present experimental results for controller synthesis for building energy and climate control
    corecore