17,801 research outputs found

    A multi-agent platform for auction-based allocation of loads in transportation logistics

    No full text
    This paper describes an agent-based platform for the allocation of loads in distributed transportation logistics, developed as a collaboration between CWI, Dutch National Center for Mathematics and Computer Science, Amsterdam and Vos Logistics Organizing, Nijmegen, The Netherlands. The platform follows a real business scenario proposed by Vos, and it involves a set of agents bidding for transportation loads to be distributed from a central depot in the Netherlands to different locations across Germany. The platform supports both human agents (i.e. transportation planners), who can bid through specialized planning and bidding interfaces, as well as automated, software agents. We exemplify how the proposed platform can be used to test both the bidding behaviour of human logistics planners, as well as the performance of automated auction bidding strategies, developed for such settings. The paper first introduces the business problem setting and then describes the architecture and main characteristics of our auction platform. We conclude with a preliminary discussion of our experience from a human bidding experiment, involving Vos planners competing for orders both against each other and against some (simple) automated strategies

    Hybridizing data stream mining and technical indicators in automated trading systems

    Get PDF
    Automated trading systems for financial markets can use data mining techniques for future price movement prediction. However, classifier accuracy is only one important component in such a system: the other is a decision procedure utilizing the prediction in order to be long, short or out of the market. In this paper, we investigate the use of technical indicators as a means of deciding when to trade in the direction of a classifier’s prediction. We compare this “hybrid” technical/data stream mining-based system with a naive system that always trades in the direction of predicted price movement. We are able to show via evaluations across five financial market datasets that our novel hybrid technique frequently outperforms the naive system. To strengthen our conclusions, we also include in our evaluation several “simple” trading strategies without any data mining component that provide a much stronger baseline for comparison than traditional buy-and-hold or sell-and-hold strategies
    • 

    corecore