73 research outputs found

    Automated Tracking of 3-D Overturn Patches in Direct Numerical Simulation of Stratified Homogeneous Turbulence

    Get PDF
    Abstract. Direct numerical simulation is a valuable tool for modeling turbulence, but like "wet lab" simulation, it does not solve the problem of how to interpret the data. Manual analysis, accompanied by visual aids, is a time consuming, error prone process due to the elaborate timedependent structures appearing in simulations. We describe a technique based on volume tracking, that enables the worker to identify and observe evolving coherent flow structures, eliminating uninteresting background data. Using our techniques we were able to investigate 3-D density overturns in stably stratified homogeneous turbulence, understand entangled physical structures and their dynamical behavior. We describe our technique, which improves on past work by incorporating application-specific knowledge into the identification process. Such knowledge was vital in filtering out spurious information that would have interfered with the experimental method. Representative results are shown which summarize the physical insight gained by the application of the above identification/tracking method

    The characteristics of billows generated by internal solitary waves

    Get PDF
    The spatial and temporal development of shear-induced overturning billows associated with breaking internal solitary waves is studied by means of a combined laboratory and numerical investigation. The waves are generated in the laboratory by a lock exchange mechanism and they are simulated numerically via a contour-advective semi-Lagrangian method. The properties of individual billows (maximum height attained, time of collapse, growth rate, speed, wavelength, Thorpe scale) are determined in each case, and the billow interaction processes are studied and classified. For broad flat waves, similar characteristics are seen to those in parallel shear flow, but, for waves not at the conjugate flow limit, billow characteristics are affected by the spatially varying wave-induced shear flow. Wave steepness and wave amplitude are shown to have a crucial influence on determining the type of interaction that occurs between billows and whether billow overturning can be arrested. Examples are given in which billows (i) evolve independently of one another, (ii) pair with one another, (iii) engulf/entrain one another and (iv) fail to completely overturn. It is shown that the vertical extent a billow can attain (and the associated Thorpe scale of the billow) is dependent on wave amplitude but that its value saturates once a given amplitude is reached. It is interesting to note that this amplitude is less than the conjugate flow limit amplitude. The number of billows that form on a wave is shown to be dependent on wavelength; shorter waves support fewer but larger billows than their long-wave counterparts for a given stratification.PostprintPeer reviewe

    Flow-3D CFD model of bifurcated open channel flow: setup and validation

    Get PDF
    Bifurcation is a morphological feature present in most of fluvial systems; where a river splits into two channels, each bearing a portion of the flow and sediments. Extensive theoretical studies of river bifurcations were performed to understand the nature of flow patterns at such diversions. Nevertheless, the complexity of the flow structure in the bifurcated channel has resulted in various constraints on physical experimentation, so computational modelling is required to investigate the phenomenon. The advantages of computational modelling compared with experimental research (e.g. simple variable control, reduced cost, optimize design condition etc.) are widely known. The great advancement of computer technologies and the exponential increase in power, memory storage and affordability of high-speed machines in the early 20th century led to evolution and wide application of numerical fluid flow simulations, generally referred to as Computational Fluid Dynamics {CFD). In this study, the open-channel flume with a lateral channel established by Momplot et al (2017) is modelled in Flow-3D. The original investigation on divided flow of equal widths as simulated in ANSYS Fluent and validated with velocity measurements

    Numerical modelling of mesoscale atmospheric dispersion

    Get PDF
    Fall 1992.Includes bibliographical references
    • โ€ฆ
    corecore