27,964 research outputs found

    Automated Experiment Design for Data-Efficient Verification of Parametric Markov Decision Processes

    Get PDF
    We present a new method for statistical verification of quantitative properties over a partially unknown system with actions, utilising a parameterised model (in this work, a parametric Markov decision process) and data collected from experiments performed on the underlying system. We obtain the confidence that the underlying system satisfies a given property, and show that the method uses data efficiently and thus is robust to the amount of data available. These characteristics are achieved by firstly exploiting parameter synthesis to establish a feasible set of parameters for which the underlying system will satisfy the property; secondly, by actively synthesising experiments to increase amount of information in the collected data that is relevant to the property; and finally propagating this information over the model parameters, obtaining a confidence that reflects our belief whether or not the system parameters lie in the feasible set, thereby solving the verification problem.Comment: QEST 2017, 18 pages, 7 figure

    Learning Concise Models from Long Execution Traces

    Full text link
    Abstract models of system-level behaviour have applications in design exploration, analysis, testing and verification. We describe a new algorithm for automatically extracting useful models, as automata, from execution traces of a HW/SW system driven by software exercising a use-case of interest. Our algorithm leverages modern program synthesis techniques to generate predicates on automaton edges, succinctly describing system behaviour. It employs trace segmentation to tackle complexity for long traces. We learn concise models capturing transaction-level, system-wide behaviour--experimentally demonstrating the approach using traces from a variety of sources, including the x86 QEMU virtual platform and the Real-Time Linux kernel

    Progressive events in supervisory control and compositional verification

    Get PDF
    This paper investigates some limitations of the nonblocking property when used for supervisor synthesis in discrete event systems. It is shown that there are cases where synthesis with the nonblocking property gives undesired results. To address such cases, the paper introduces progressive events as a means to specify more precisely how a synthesised supervisor should complete its tasks. The nonblocking property is modified to take progressive events into account, and appropriate methods for verification and synthesis are proposed. Experiments show that progressive events can be used in the analysis of industrial-scale systems, and can expose issues that remain undetected by standard nonblocking verification
    corecore