89 research outputs found

    Guessing Winning Policies in LTL Synthesis by Semantic Learning

    Full text link
    We provide a learning-based technique for guessing a winning strategy in a parity game originating from an LTL synthesis problem. A cheaply obtained guess can be useful in several applications. Not only can the guessed strategy be applied as best-effort in cases where the game's huge size prohibits rigorous approaches, but it can also increase the scalability of rigorous LTL synthesis in several ways. Firstly, checking whether a guessed strategy is winning is easier than constructing one. Secondly, even if the guess is wrong in some places, it can be fixed by strategy iteration faster than constructing one from scratch. Thirdly, the guess can be used in on-the-fly approaches to prioritize exploration in the most fruitful directions. In contrast to previous works, we (i)~reflect the highly structured logical information in game's states, the so-called semantic labelling, coming from the recent LTL-to-automata translations, and (ii)~learn to reflect it properly by learning from previously solved games, bringing the solving process closer to human-like reasoning

    Reducing Acceptance Marks in Emerson-Lei Automata by QBF Solving

    Get PDF

    Rigorous Design of FDIR Systems with BIP

    Get PDF
    The correct design of autonomous systems is a challenge, due to the uncertainties arising at execution time. A special case of uncertainties are the faults and failures that break the system’s requirements. Dealing with such situations requires to design fault detection, isolation and recovery (FDIR) components. The aim of FDIR components is to detect when a fault has occurred and to apply a recovery strategy that brings the system into a mode where the requirements are satisfied. In this paper we describe an approach based on the Behavior, Interaction, Priority (BIP) tools for the rigorous design of FDIR components. This approach leverages the scalability of statistical model-checking tool BIP-SMC to check for requirement satisfaction, and the code generation feature of the BIP compiler. Moreover, the generated code is executable with the BIP engine(s) and easily integrated with the original system. The approach has been used in the H2020 ESROCOS and ERGO projects for the development of (autonomous) robotics control systems, which have been validated through field trials

    Index appearance record with preorders

    Get PDF
    Transforming ω-automata into parity automata is traditionally done using appearance records. We present an efficient variant of this idea, tailored to Rabin automata, and several optimizations applicable to all appearance records. We compare the methods experimentally and show that our method produces significantly smaller automata than previous approaches

    Logical and deep learning methods for temporal reasoning

    Get PDF
    In this thesis, we study logical and deep learning methods for the temporal reasoning of reactive systems. In Part I, we determine decidability borders for the satisfiability and realizability problem of temporal hyperproperties. Temporal hyperproperties relate multiple computation traces to each other and are expressed in a temporal hyperlogic. In particular, we identify decidable fragments of the highly expressive hyperlogics HyperQPTL and HyperCTL*. As an application, we elaborate on an enforcement mechanism for temporal hyperproperties. We study explicit enforcement algorithms for specifications given as formulas in universally quantified HyperLTL. In Part II, we train a (deep) neural network on the trace generation and realizability problem of linear-time temporal logic (LTL). We consider a method to generate large amounts of additional training data from practical specification patterns. The training data is generated with classical solvers, which provide one of many possible solutions to each formula. We demonstrate that it is sufficient to train on those particular solutions such that the neural network generalizes to the semantics of the logic. The neural network can predict solutions even for formulas from benchmarks from the literature on which the classical solver timed out. Additionally, we show that it solves a significant portion of problems from the annual synthesis competition (SYNTCOMP) and even out-of-distribution examples from a recent case study.Diese Arbeit befasst sich mit logischen Methoden und mehrschichtigen Lernmethoden für das zeitabhängige Argumentieren über reaktive Systeme. In Teil I werden die Grenzen der Entscheidbarkeit des Erfüllbarkeits- und des Realisierbarkeitsproblem von temporalen Hypereigenschaften bestimmt. Temporale Hypereigenschaften setzen mehrere Berechnungsspuren zueinander in Beziehung und werden in einer temporalen Hyperlogik ausgedrückt. Insbesondere werden entscheidbare Fragmente der hochexpressiven Hyperlogiken HyperQPTL und HyperCTL* identifiziert. Als Anwendung wird ein Enforcement-Mechanismus für temporale Hypereigenschaften erarbeitet. Explizite Enforcement-Algorithmen für Spezifikationen, die als Formeln in universell quantifiziertem HyperLTL angegeben werden, werden untersucht. In Teil II wird ein (mehrschichtiges) neuronales Netz auf den Problemen der Spurgenerierung und Realisierbarkeit von Linear-zeit Temporallogik (LTL) trainiert. Es wird eine Methode betrachtet, um aus praktischen Spezifikationsmustern große Mengen zusätzlicher Trainingsdaten zu generieren. Die Trainingsdaten werden mit klassischen Solvern generiert, die zu jeder Formel nur eine von vielen möglichen Lösungen liefern. Es wird gezeigt, dass es ausreichend ist, an diesen speziellen Lösungen zu trainieren, sodass das neuronale Netz zur Semantik der Logik generalisiert. Das neuronale Netz kann Lösungen sogar für Formeln aus Benchmarks aus der Literatur vorhersagen, bei denen der klassische Solver eine Zeitüberschreitung hatte. Zusätzlich wird gezeigt, dass das neuronale Netz einen erheblichen Teil der Probleme aus dem jährlichen Synthesewettbewerb (SYNTCOMP) und sogar Beispiele außerhalb der Distribution aus einer aktuellen Fallstudie lösen kann

    ReluDiff: Differential Verification of Deep Neural Networks

    Full text link
    As deep neural networks are increasingly being deployed in practice, their efficiency has become an important issue. While there are compression techniques for reducing the network's size, energy consumption and computational requirement, they only demonstrate empirically that there is no loss of accuracy, but lack formal guarantees of the compressed network, e.g., in the presence of adversarial examples. Existing verification techniques such as Reluplex, ReluVal, and DeepPoly provide formal guarantees, but they are designed for analyzing a single network instead of the relationship between two networks. To fill the gap, we develop a new method for differential verification of two closely related networks. Our method consists of a fast but approximate forward interval analysis pass followed by a backward pass that iteratively refines the approximation until the desired property is verified. We have two main innovations. During the forward pass, we exploit structural and behavioral similarities of the two networks to more accurately bound the difference between the output neurons of the two networks. Then in the backward pass, we leverage the gradient differences to more accurately compute the most beneficial refinement. Our experiments show that, compared to state-of-the-art verification tools, our method can achieve orders-of-magnitude speedup and prove many more properties than existing tools.Comment: Extended version of ICSE 2020 paper. This version includes an appendix with proofs for some of the content in section 4.
    • …
    corecore