552 research outputs found

    “Ask Ernö”: a self-learning tool for assignment and prediction of nuclear magnetic resonance spectra

    Get PDF
    Background: We present "Ask Erno", a self-learning system for the automatic analysis of NMR spectra, consisting of integrated chemical shift assignment and prediction tools. The output of the automatic assignment component initializes and improves a database of assigned protons that is used by the chemical shift predictor. In turn, the predictions provided by the latter facilitate improvement of the assignment process. Iteration on these steps allows Ask Erno to improve its ability to assign and predict spectra without any prior knowledge or assistance from human experts. Results: This concept was tested by training such a system with a dataset of 2341 molecules and their H-1-NMR spectra, and evaluating the accuracy of chemical shift predictions on a test set of 298 partially assigned molecules (2007 assigned protons). After 10 iterations, Ask Erno was able to decrease its prediction error by 17 %, reaching an average error of 0.265 ppm. Over 60 % of the test chemical shifts were predicted within 0.2 ppm, while only 5 % still presented a prediction error of more than 1 ppm. Conclusions: Ask Erno introduces an innovative approach to automatic NMR analysis that constantly learns and improves when provided with new data. Furthermore, it completely avoids the need for manually assigned spectra. This system has the potential to be turned into a fully autonomous tool able to compete with the best alternatives currently available

    13C NMR spectral data and molecular descriptors to predict the antioxidant activity of flavonoids

    Get PDF
    Tissue damage due to oxidative stress is directly linked to development of many, if not all, human morbidity factors and chronic diseases. In this context, the search for dietary natural occurring molecules with antioxidant activity, such as flavonoids, has become essential. In this study, we investigated a set of 41 flavonoids (23 flavones and 18 flavonols) analyzing their structures and biological antioxidant activity. The experimental data were submitted to a QSAR (quantitative structure-activity relationships) study. NMR 13C data were used to perform a Kohonen self-organizing map study, analyzing the weight that each carbon has in the activity. Additionally, we performed MLR (multilinear regression) using GA (genetic algorithms) and molecular descriptors to analyze the role that specific carbons and substitutions play in the activity.Danos aos tecidos devido ao estresse oxidativo estão diretamente ligados ao desenvolvimento de muitos, senão todos, os fatores de sedentarismo e de doenças crônicas. Neste contexto, a busca de moléculas naturais, que participam da nossa dieta e que possuam atividade antioxidante, flavonóides, torna-se de grande interesse. Neste estudo, nós investigamos um conjunto de 41 flavonóides (23 flavonas e 18 flavonóis), relacionando suas estruturas e atividade antioxidante. Os dados experimentais foram submetidos à análise de QSAR (relações quantitativas estrutura-atividade). Dados de RMN 13C foram utilizados para realizar um estudo do mapa auto-organizável de Kohonen, analisando o peso que cada carbono tem na atividade. Além disso, realizamos uma MLR (regressão múltipla) usando GA (algoritmos genéticos) e descritores moleculares para avaliar a influência de carbonos e substituições na atividade

    Quantum Chemistry Calculations for Metabolomics

    Get PDF
    A primary goal of metabolomics studies is to fully characterize the small-molecule composition of complex biological and environmental samples. However, despite advances in analytical technologies over the past two decades, the majority of small molecules in complex samples are not readily identifiable due to the immense structural and chemical diversity present within the metabolome. Current gold-standard identification methods rely on reference libraries built using authentic chemical materials (“standards”), which are not available for most molecules. Computational quantum chemistry methods, which can be used to calculate chemical properties that are then measured by analytical platforms, offer an alternative route for building reference libraries, i.e., in silico libraries for “standards-free” identification. In this review, we cover the major roadblocks currently facing metabolomics and discuss applications where quantum chemistry calculations offer a solution. Several successful examples for nuclear magnetic resonance spectroscopy, ion mobility spectrometry, infrared spectroscopy, and mass spectrometry methods are reviewed. Finally, we consider current best practices, sources of error, and provide an outlook for quantum chemistry calculations in metabolomics studies. We expect this review will inspire researchers in the field of small-molecule identification to accelerate adoption of in silico methods for generation of reference libraries and to add quantum chemistry calculations as another tool at their disposal to characterize complex samples.A primary goal of metabolomics studies is to fully characterize the small-molecule composition of complex biological and environmental samples. However, despite advances in analytical technologies over the past two decades, the majority of small molecules in complex samples are not readily identifiable due to the immense structural and chemical diversity present within the metabolome. Current gold-standard identification methods rely on reference libraries built using authentic chemical materials (“standards”), which are not available for most molecules. Computational quantum chemistry methods, which can be used to calculate chemical properties that are then measured by analytical platforms, offer an alternative route for building reference libraries, i.e., in silico libraries for “standards-free” identification. In this review, we cover the major roadblocks currently facing metabolomics and discuss applications where quantum chemistry calculations offer a solution. Several successful examples for nuclear magnetic resonance spectroscopy, ion mobility spectrometry, infrared spectroscopy, and mass spectrometry methods are reviewed. Finally, we consider current best practices, sources of error, and provide an outlook for quantum chemistry calculations in metabolomics studies. We expect this review will inspire researchers in the field of small-molecule identification to accelerate adoption of in silico methods for generation of reference libraries and to add quantum chemistry calculations as another tool at their disposal to characterize complex samples

    Robust automatic assignment of nuclear magnetic resonance spectra for small molecules

    Get PDF
    Abstract. In this document we describe a fully automatic assignment system for Nuclear Magnetic Resonance (NMR) for small molecules. This system has 3 main features: 1. it uses as input raw NMR data. Which means it should be able to extract from them the information that is useful while ignores the noise; 2. it assigns the signals to atoms in the structure, and associates to each assignment a confidence value, which is used to sort all possible solutions; 3. it does not depend on chemical shifts predictions. So it can use the connectivity information observed in 2D NMR spectra and integrals to perform an assignment(coupling constants are also a possibility, but were not explored in this work). However, the system can use chemical shifts if available.; 4. it can learn in an unsupervised fashion, the relation between configurations of atoms and chemical shifts while solving assignment problems, which allows the system to improve while working. Analogous to the way a human works. This system is completely open source, as well as the data used in this work.En este trabajo describimos un sistema completamente automático de asignación de espectros de Resonancia Magnética Nuclear(RMN) para moléculas pequeñas. Este sistema tiene la siguientes características: 1. usa como entrada datos de RMN crudos. Lo que significa que debe ser capaz de extraer de ellos, la información que es útil y dejar de lado el ruido; 2. asigna las señales a átomos en la estructura, y asocia a cada asignación un valor de confianza, que es usado para ordenar todas las posibles soluciones; 3. no depende de predicciones de desplazamientos químicos, de forma que puede usar solo la información de conectividad observada en los espectros de RMN 2D y las integrales( las constantes de acople también son una posibilidad, pero no fueron exploradas en este trabajo). Sin embargo el sistema puede usar los desplazamientos químicos si están disponibles; 4. puede aprender de forma no supervisada, la relación entre configuraciones de átomos y desplazamientos químicos mientras resuelve problemas de asignación, lo que le permite mejorar mientras trabaja, de forma análoga a como lo hace un humano. Este sistema es completamente de código abierto, al igual que los datos que se usaron en este trabajo.Doctorad

    Advances in structure elucidation of small molecules using mass spectrometry

    Get PDF
    The structural elucidation of small molecules using mass spectrometry plays an important role in modern life sciences and bioanalytical approaches. This review covers different soft and hard ionization techniques and figures of merit for modern mass spectrometers, such as mass resolving power, mass accuracy, isotopic abundance accuracy, accurate mass multiple-stage MS(n) capability, as well as hybrid mass spectrometric and orthogonal chromatographic approaches. The latter part discusses mass spectral data handling strategies, which includes background and noise subtraction, adduct formation and detection, charge state determination, accurate mass measurements, elemental composition determinations, and complex data-dependent setups with ion maps and ion trees. The importance of mass spectral library search algorithms for tandem mass spectra and multiple-stage MS(n) mass spectra as well as mass spectral tree libraries that combine multiple-stage mass spectra are outlined. The successive chapter discusses mass spectral fragmentation pathways, biotransformation reactions and drug metabolism studies, the mass spectral simulation and generation of in silico mass spectra, expert systems for mass spectral interpretation, and the use of computational chemistry to explain gas-phase phenomena. A single chapter discusses data handling for hyphenated approaches including mass spectral deconvolution for clean mass spectra, cheminformatics approaches and structure retention relationships, and retention index predictions for gas and liquid chromatography. The last section reviews the current state of electronic data sharing of mass spectra and discusses the importance of software development for the advancement of structure elucidation of small molecules

    Mathematische Verfahren zur Aufklärung der Struktur, Dynamik und biologischen Aktivität von Molekülen unter Verwendung von NMR spektroskopischen und empirischen Parametern

    Get PDF
    In der vorliegenden Arbeit werden Verfahren der Mathematik und Informatik entwickelt und eingesetzt, um Struktur, Dynamik und biologische Aktivität aus NMR spektroskopischen und empirischen Parametern zu bestimmen. Dolastatin 10 und Epothilon A sind potentielle Wirkstoffe gegen Krebs, da sie durch Wechselwirkung mit Tubulin die Zellteilung unterbinden. Die 3D Struktur beider Wirkstoffe in Lösung und die Struktur von an Tubulin gebundenem Epothilon A wird aus NMR spektroskopischen Parametern bestimmt. Dolastatin 10 liegt in einem konformationellen Gleichgewicht zwischen der cis -- und trans -- Konformation in der ungewöhnlichen Aminosäure DAP vor. Beide Konformationen des flexiblen Pentapeptids können bestimmt werden mit RMSD = 1.423 Å für das cis -- Konformer und RMSD = 1.488 Å für das trans -- Konformer. Während das trans -- Konformer gestreckt vorliegt, faltet das cis -- Konformer am DAP zurück. Epothilone A ist durch einen Makrozyklus weniger flexibel und sowohl die an Tubulin gebundene Struktur (RMSD = 0.537 Å) als auch freie Form (RMSD = 0.497 Å) kann mit geringen RMSD -- Werten bestimmt werden. Die Struktur der freien Form, welche in Lösung hauptsächlich vorliegt, ist mit der Röntgenstruktur weitgehend identisch. In der an Tubulin gebundenen Form wird eine essentielle Umorientierung der Seitenkette beobachtet, die für die Wechselwirkung mit Tubulin entscheidend ist. Dipolare Kopplungen eines Proteins sind geeignet, eine 3D Homologiesuche in der PDB durchzuführen, da die relative Orientierung von Sekundärstrukturelementen und Domänen durch sie beschrieben wird 85 . Die frühe Erkennung 3D homologer Proteinfaltungen eröffnet die Möglichkeit, die Bestimmung von Proteinstrukturen zu beschleunigen. Eine Homolgiesuche unter Nutzung dipolarer Kopplungen ist in der Lage, Proteine oder zumindest Fragmente mit ähnlicher 3D Struktur zu finden, auch wenn die Primärsequenzhomologie gering ist. Darüber hinaus wird eine Transformation für experimentelle dipolare Kopplungen entwickelt, die die indirekte Orientierungsinformation eines Vektors relativ zu einem externen Tensor in den möglichen Bereich für den Projektionswinkel zwischen zwei Vektoren und somit in eine intramolekulare Strukturinformation übersetzt. Diese Einschränkungen können in der Strukturbestimmung von Proteinen mittels Molekulardynamik genutzt werden 92 . Im Gegensatz zu allen existierenden Implementierungen wird die Konvergenz der Rechnung durch die auf diese Weise eingeführten dipolare Kopplungsinformation kaum beeinflusst. Die dipolaren Kopplungen werden trotzdem von den errechneten Strukturen erfüllt. Auch ohne die Nutzung bereits bekannter Protein­ oder Fragmentstrukturen kann so ein erheblicher Teil der NOE -- Information substituiert werden. Die Dynamik des Vektors, der die beiden wechselwirkenden Dipole verbindet, beeinflusst den Messwert der dipolaren Kopplung. Dadurch wird Information über die Dynamik von Molekülen auf der µs­Zeitskala zugänglich, die bisher nur schwer untersucht werden konnte. Die Messung dipolarer Kopplungen für einen Vektor in verschiedenen Orientierungen erlaubt die Analyse seiner Bewegung 89 . Im besonderen ist die Ableitung eines modellfreien Ordnungsparameters 2 S möglich. Weiterhin lassen sich ebenso modellfrei eine mittlere Orientierung des Vektors, axialsymmetrische Anteile und nichtaxialsymmetrische Anteile der Dynamik ableiten und auswerten. Die Anwendung der so entwickelten Protokolle auf experimentelle Daten 90 lässt Proteine deutlich dynamischer erscheinen als auf der Zeitskala der Relaxationsexperimente zu erkennen ist. Der mittlere Ordnungsparameter sinkt von 0.8 auf 0.6. Dies entspricht einer Erhöhung des Öffnungswinkels der Bewegung von ca. 22 ° auf ca. 33°. Die Bewegungen weichen teilweise bis zu 40% und im Mittel 15% von der Axialsymmetrie ab. Neuronale Netze erlauben eine schnelle (ca. 5000 chemische Verschiebungen pro Sekunde) und exakte (mittleren Abweichung von 1.6 ppm) Berechnung der 13 C NMR chemischen Verschiebung 115 . Dabei kombinieren sie die Vorteile bisher bekannter Datenbankabschätzungen (hohe Genauigkeit) und Inkrementverfahren (hohe Geschwindigkeit). Das 13 C NMR Spektrum einer organischen Verbindung stellt eine detaillierte Beschreibung seiner Struktur dar. Resultate des Strukturgenerators COCON können durch den Vergleich des experimentellen mit den berechneten 13 C NMR Spektren auf ca. 1 o/oo der vorgeschlagenen Strukturen eingeschränkt werden, die eine geringe Abweichung zum experimentellen Spektrum haben 122 . Die Kombination mit einer Substrukturanalyse erlaubt weiterhin die Erkennung wahrscheinlicher, geschlossener Ringsysteme und gibt einen Überblick über die Struktur des generierten Konstitutionssubraumes. Genetische Algorithmen können die Struktur organischer Moleküle ausgehend von derer Summenformel auf eine Übereinstimmung mit dem experimentellen 13 C NMR Spektrum optimieren. Die Konstitution von Molekülen wird dafür durch einen Vektor der Bindungszustände zwischen allen Atom -- Atom Paaren beschrieben. Selbige Vektoren sind geeignet, in einem genetischen Algorithmus als genetischer Code von Konstitutionen betrachtet zu werden. Diese Methode erlaubt die automatisierte Bestimmung der Konstitution von Molekülen mit 10 bis 20 Nichtwasserstoffatomen 123 . Symmetrische neuronale Netze können fünf bzw. sieben dimensionale, heterogene Parameterrepräsentationen der 20 proteinogenen Aminosäuren unter Erhalt der wesentlichen Information in den dreidimensionalen Raum projizieren 134 . Die niederdimensionalen Projektionen ermöglichen eine Visualisierung der Beziehungen der Aminosäuren untereinander. Die reduzierten Parameterrepräsentationen sind geeignet, als Eingabe für ein neuronales Netz zu dienen, welches die Sekundärstruktur eines Proteins mit einer Genauigkeit von 66 % im Q 3 -- Wert berechnet. Neuronale Netzte sind aufgrund ihrer flexiblen Struktur besonders geeignet, quantitative Beziehungen zwischen Struktur und Aktivität zu beschreiben, da hier hochgradig nichtlineare, komplexe Zusammenhänge vorliegen. Eine numerische Codierung der über 200 in der Literatur beschriebenen Epothilonderivate erlaubt es, Modelle zur Berechnung der Induktion der Tubulin Polymerisation (R = 0.73) und der Inhibierung des Krebszellenwachstums (R = 0.94) zu erstellen 136 . Die trainierten neuronalen Netze können in einer Sensitivitätsanalyse genutzt werden, um die Bindungsstellen des Moleküls zu identifizieren. Aus der Berechnung der Aktivität für alle Moleküle des durch die Parameter definierten Strukturraums ergeben sich Vorschläge für Epothilonderivate, die bis zu 1 000 mal aktiver als die bisher synthetisierten sein könnten

    NMR and Metabolomics—A Roadmap for the Future

    Get PDF
    Metabolomics investigates global metabolic alterations associated with chemical, biological, physiological, or pathological processes. These metabolic changes are measured with various analytical platforms including liquid chromatography-mass spectrometry (LC-MS), gas chromatographymass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR). While LC-MS methods are becoming increasingly popular in the field of metabolomics (accounting for more than 70% of published metabolomics studies to date), there are considerable benefits and advantages to NMR-based methods for metabolomic studies. In fact, according to PubMed, more than 926 papers on NMR-based metabolomics were published in 2021—the most ever published in a given year. This suggests that NMR-based metabolomics continues to grow and has plenty to offer to the scientific community. This perspective outlines the growing applications of NMR in metabolomics, highlights several recent advances in NMR technologies for metabolomics, and provides a roadmap for future advancements
    corecore