129 research outputs found

    Robust Machine Learning-Based Correction on Automatic Segmentation of the Cerebellum and Brainstem.

    Get PDF
    Automated segmentation is a useful method for studying large brain structures such as the cerebellum and brainstem. However, automated segmentation may lead to inaccuracy and/or undesirable boundary. The goal of the present study was to investigate whether SegAdapter, a machine learning-based method, is useful for automatically correcting large segmentation errors and disagreement in anatomical definition. We further assessed the robustness of the method in handling size of training set, differences in head coil usage, and amount of brain atrophy. High resolution T1-weighted images were acquired from 30 healthy controls scanned with either an 8-channel or 32-channel head coil. Ten patients, who suffered from brain atrophy because of fragile X-associated tremor/ataxia syndrome, were scanned using the 32-channel head coil. The initial segmentations of the cerebellum and brainstem were generated automatically using Freesurfer. Subsequently, Freesurfer's segmentations were both manually corrected to serve as the gold standard and automatically corrected by SegAdapter. Using only 5 scans in the training set, spatial overlap with manual segmentation in Dice coefficient improved significantly from 0.956 (for Freesurfer segmentation) to 0.978 (for SegAdapter-corrected segmentation) for the cerebellum and from 0.821 to 0.954 for the brainstem. Reducing the training set size to 2 scans only decreased the Dice coefficient ≤0.002 for the cerebellum and ≤ 0.005 for the brainstem compared to the use of training set size of 5 scans in corrective learning. The method was also robust in handling differences between the training set and the test set in head coil usage and the amount of brain atrophy, which reduced spatial overlap only by <0.01. These results suggest that the combination of automated segmentation and corrective learning provides a valuable method for accurate and efficient segmentation of the cerebellum and brainstem, particularly in large-scale neuroimaging studies, and potentially for segmenting other neural regions as well

    Development of a tool for automatic segmentation of the cerebellum in MR images of children

    Get PDF
    The human cerebellar cortex is a highly foliated structure that supports both motor and complex cognitive functions in humans. Magnetic Resonance Imaging (MRI) is commonly used to explore structural alterations in patients with psychiatric and neurological diseases. The ability to detect regional structural differences in cerebellar lobules may provide valuable insights into disease biology, progression and response to treatment, but has been hampered by the lack of appropriate tools for performing automated structural cerebellar segmentation and morphometry. In this thesis, time intensive manual tracings by an expert neuroanatomist of 16 cerebellar regions on high-resolution T1-weighted MR images of 18 children aged 9-13 years were used to generate the Cape Town Pediatric Cerebellar Atlas (CAPCA18) in the age-appropriate National Institute of Health Pediatric Database (NIHPD) asymmetric template space. An automated pipeline was developed to process the MR images and generate lobule-wise segmentations, as well as a measure of the uncertainty of the label assignments. Validation in an independent group of children with ages similar to those of the children used in the construction of the atlas, yielded spatial overlaps with manual segmentations greater than 70% in all lobules, except lobules VIIb and X. Average spatial overlap of the whole cerebellar cortex was 86%, compared to 78% using the alternative Spatially Unbiased Infra-tentorial Template (SUIT), which was developed using adult images

    CerebNet: A fast and reliable deep-learning pipeline for detailed cerebellum sub-segmentation

    Get PDF
    Quantifying the volume of the cerebellum and its lobes is of profound interest in various neurodegenerative and acquired diseases. Especially for the most common spinocerebellar ataxias (SCA), for which the first antisense oligonculeotide-base gene silencing trial has recently started, there is an urgent need for quantitative, sensitive imaging markers at pre-symptomatic stages for stratification and treatment assessment. This work introduces CerebNet, a fully automated, extensively validated, deep learning method for the lobular segmentation of the cerebellum, including the separation of gray and white matter. For training, validation, and testing, T1-weighted images from 30 participants were manually annotated into cerebellar lobules and vermal sub-segments, as well as cerebellar white matter. CerebNet combines FastSurferCNN, a UNet-based 2.5D segmentation network, with extensive data augmentation, e.g. realistic non-linear deformations to increase the anatomical variety, eliminating additional preprocessing steps, such as spatial normalization or bias field correction. CerebNet demonstrates a high accuracy (on average 0.87 Dice and 1.742mm Robust Hausdorff Distance across all structures) outperforming state-of-the-art approaches. Furthermore, it shows high test-retest reliability (average ICC >0.97 on OASIS and Kirby) as well as high sensitivity to disease effects, including the pre-ataxic stage of spinocerebellar ataxia type 3 (SCA3). CerebNet is compatible with FreeSurfer and FastSurfer and can analyze a 3D volume within seconds on a consumer GPU in an end-to-end fashion, thus providing an efficient and validated solution for assessing cerebellum sub-structure volumes. We make CerebNet available as source-code (https://github.com/Deep-MI/FastSurfer)

    Cerebellar Structure Segmentation and Shape Analysis with Application to Cerebellar Ataxia

    Get PDF
    The cerebellum plays an important role in motor control and cognitive functions. Cerebellar dysfunction can lead to a wide range of movement disorders. Despite the significant impact on the lives of patients, the current standard of diagnosis, prognosis, and treatment for cerebellar disease is limited. Magnetic resonance (MR) imaging based morphometric analysis of the cerebellum, which studies the brain structural pattern associated with disease and functional decline, is of great interest and importance. It sets the stage for developing disease-modifying therapies, monitoring individual patient progress, and designing efficient therapeutic trials. Compared to the cerebrum, morphometric analysis in the cerebellum has been limited. Automated and accurate volumetric analysis techniques are lacking. Methods using MR based morphometric biomarkers to predict disease type and functional decline have been lacking or inconclusive. The work presented in this thesis is motivated by the need for better cerebellar structure segmentation and effective structure-function correlation and prediction methods in cerebellar disease. The thesis makes four major contributions. First, we proposed an automated method for segmenting cerebellar lobules from MR images. The proposed method achieved better performance than two state-of-the-art segmentation methods when validated on a cohort of 15 subjects including both healthy controls and patients with various degrees of cerebellar atrophy. Second, we presented two highly-informative shape representations to characterize cerebellar structures: a landmark shape representation of the collection of cerebellar lobules and a level set based whole cerebellar shape representation. Third, we developed an analysis pipeline to classify healthy controls and different ataxia types and to visualize disease specific cerebellar atrophy patterns based on the proposed shape representations and high-dimensional pattern classification methods. The classification performance is evaluated on a cohort consisting of healthy controls and different cerebellar ataxia types. The visualized cerebellar atrophy patterns are consistent with the regional volume decreases observed in previous studies in cerebellar ataxia. Compared to existing analysis methods, the proposed method provides intuitive and detailed visualization of the differences of overall size and shape of the cerebellum, as well as that of individual lobules. Fourth and the last, we developed and tested a similar analysis pipeline for functional score prediction and function specific cerebellar atrophy pattern visualization

    Comparing fully automated state-of-the-art cerebellum parcellation from magnetic resonance images

    Full text link
    [EN] The human cerebellum plays an essential role in motor control, is involved in cognitive function (i.e., attention, working memory, and language), and helps to regulate emotional responses. Quantitative in-vivo assessment of the cerebellum is important in the study of several neurological diseases including cerebellar ataxia, autism, and schizophrenia. Different structural subdivisions of the cerebellum have been shown to correlate with differing pathologies. To further understand these pathologies, it is helpful to automatically parcellate the cerebellum at the highest fidelity possible. In this paper, we coordinated with colleagues around the world to evaluate automated cerebellum parcellation algorithms on two clinical cohorts showing that the cerebellum can be parcellated to a high accuracy by newer methods. We characterize these various methods at four hierarchical levels: coarse (i.e., whole cerebellum and gross structures), lobe, subdivisions of the vermis, and the lobules. Due to the number of labels, the hierarchy of labels, the number of algorithms, and the two cohorts, we have restricted our analyses to the Dice measure of overlap. Under these conditions, machine learning based methods provide a collection of strategies that are efficient and deliver parcellations of a high standard across both cohorts, surpassing previous work in the area. In conjunction with the rank-sum computation, we identified an overall winning method.The data collection and labeling of the cerebellum was supported in part by the NIH/NINDS grant R01 NS056307 (PI: J.L. Prince) and NIH/NIMH grants R01 MH078160 & R01 MH085328 (PI: S.H. Mostofsky). PMT is supported in part by the NIH/NIBIB grant U54 EB020403. CERES2 development was supported by grant UPV2016-0099 from the Universitat Politecnica de Valencia (PI: J.V. Manjon); the French National Research Agency through the Investments for the future Program IdEx Bordeaux (ANR-10-IDEX-03-02, HL-MRI Project; PI: P. Coupe) and Cluster of excellence CPU and TRAIL (HR-DTI ANR-10-LABX-57; PI: P. Coupe). Support for the development of LiviaNET was provided by the National Science and Engineering Research Council of Canada (NSERC), discovery grant program, and by the ETS Research Chair on Artificial Intelligence in Medical Imaging. The authors wish to acknowledge the invaluable contributions offered by Dr. George Fein (Dept. of Medicine and Psychology, University of Hawaii) in preparing this manuscript.Carass, A.; Cuzzocreo, JL.; Han, S.; Hernandez-Castillo, CR.; Rasser, PE.; Ganz, M.; Beliveau, V.... (2018). Comparing fully automated state-of-the-art cerebellum parcellation from magnetic resonance images. NeuroImage. 183:150-172. https://doi.org/10.1016/j.neuroimage.2018.08.003S15017218

    Substantially thinner internal granular layer and reduced molecular layer surface in the cerebellum of the Tc1 mouse model of Down Syndrome - a comprehensive morphometric analysis with active staining contrast-enhanced MRI

    Get PDF
    Down Syndrome is a chromosomal disorder that affects the development of cerebellar cortical lobules. Impaired neurogenesis in the cerebellum varies among different types of neuronal cells and neuronal layers. In this study, we developed an imaging analysis framework that utilizes gadolinium-enhanced ex vivo mouse brain MRI. We extracted the middle Purkinje layer of the mouse cerebellar cortex, enabling the estimation of the volume, thickness, and surface area of the entire cerebellar cortex, the internal granular layer, and the molecular layer in the Tc1 mouse model of Down Syndrome. The morphometric analysis of our method revealed that a larger proportion of the cerebellar thinning in this model of Down Syndrome resided in the inner granule cell layer, while a larger proportion of the surface area shrinkage was in the molecular layer

    A CAD system for early diagnosis of autism using different imaging modalities.

    Get PDF
    The term “autism spectrum disorder” (ASD) refers to a collection of neuro-developmental disorders that affect linguistic, behavioral, and social skills. Autism has many symptoms, most prominently, social impairment and repetitive behaviors. It is crucial to diagnose autism at an early stage for better assessment and investigation of this complex syndrome. There have been a lot of efforts to diagnose ASD using different techniques, such as imaging modalities, genetic techniques, and behavior reports. Imaging modalities have been extensively exploited for ASD diagnosis, and one of the most successful ones is Magnetic resonance imaging(MRI),where it has shown promise for the early diagnosis of the ASD related abnormalities in particular. Magnetic resonance imaging (MRI) modalities have emerged as powerful means that facilitate non-invasive clinical diagnostics of various diseases and abnormalities since their inception in the 1980s. After the advent in the nineteen eighties, MRI soon became one of the most promising non- invasive modalities for visualization and diagnostics of ASD-related abnormalities. Along with its main advantage of no exposure to radiation, high contrast, and spatial resolution, the recent advances to MRI modalities have notably increased diagnostic certainty. Multiple MRI modalities, such as different types of structural MRI (sMRI) that examines anatomical changes, and functional MRI (fMRI) that examines brain activity by monitoring blood flow changes,have been employed to investigate facets of ASD in order to better understand this complex syndrome. This work aims at developing a new computer-aided diagnostic (CAD) system for autism diagnosis using different imaging modalities. It mainly relies on making use of structural magnetic resonance images for extracting notable shape features from parts of the brainthat proved to correlate with ASD from previous neuropathological studies. Shape features from both the cerebral cortex (Cx) and cerebral white matter(CWM)are extracted. Fusion of features from these two structures is conducted based on the recent findings suggesting that Cx changes in autism are related to CWM abnormalities. Also, when fusing features from more than one structure, this would increase the robustness of the CAD system. Moreover, fMRI experiments are done and analyzed to find areas of activation in the brains of autistic and typically developing individuals that are related to a specific task. All sMRI findings are fused with those of fMRI to better understand ASD in terms of both anatomy and functionality,and thus better classify the two groups. This is one aspect of the novelty of this CAD system, where sMRI and fMRI studies are both applied on subjects from different ages to diagnose ASD. In order to build such a CAD system, three main blocks are required. First, 3D brain segmentation is applied using a novel hybrid model that combines shape, intensity, and spatial information. Second, shape features from both Cx and CWM are extracted and anf MRI reward experiment is conducted from which areas of activation that are related to the task of this experiment are identified. Those features were extracted from local areas of the brain to provide an accurate analysis of ASD and correlate it with certain anatomical areas. Third and last, fusion of all the extracted features is done using a deep-fusion classification network to perform classification and obtain the diagnosis report. Fusing features from all modalities achieved a classification accuracy of 94.7%, which emphasizes the significance of combining structures/modalities for ASD diagnosis. To conclude, this work could pave the pathway for better understanding of the autism spectrum by finding local areas that correlate to the disease. The idea of personalized medicine is emphasized in this work, where the proposed CAD system holds the promise to resolve autism endophenotypes and help clinicians deliver personalized treatment to individuals affected with this complex syndrome

    MICROSTRUCTURE AND CONNECTIVITY OF THE CEREBELLUM WITH ADVANCED DIFFUSION MRI IN HEALTH AND PATHOLOGY

    Get PDF
    The cerebellum contains most of the central nervous system neurons and it is classically known to be a key region for sensorimotor coordination and learning. However, its role in higher cognitive functions has been increasingly recognised, thus raising the interest of neuroscience and neuroimaging communities. Despite this, knowledge of cerebellar structure and function is still incomplete and the interpretation of experimental results is often problematic. For these and also technical reasons the cerebellum is still frequently disregarded in magnetic resonance imaging (MRI) studies. Therefore, the principal aim of this work was to use MRI to investigate cerebellar microstructure and macrostructural connectivity in health and pathology, focusing also on technical aspects of image acquisition. The starting point of each project described in the present thesis were techniques, models and pipelines currently accepted in clinical practice. The meeting of inadequacies or problems of such techniques raised questions that pushed research to a more fundamental level. This thesis has three main contributions. The first part presents a clinical study of cerebellar involvement in processing speed deficits in multiple sclerosis, where combined tractography and network science highlighted the importance of the cerebellum in patients\u2019 cognitive performance. Then a deeper investigation conducted on high-quality diffusion MRI data with advanced diffusion signal models showed that subregions of the cerebellar cortex are characterised by different microstructural features: this represents one of the very first attempts to use diffusion MRI to face the widespread idea of cerebellar cortex uniformity, which has been recently challenged by findings from other research fields, thus providing new perspectives for the study of cerebellar information processing in health and pathology. Finally, the emerging technical problems that hamper the study of small structures within the cerebellum were tackled by developing dedicated acquisition protocols that exploit reduced field-of-view techniques for 3T and 7T MRI scanners

    cerebellum parcellation from magnetic resonance imaging using deep learning

    Get PDF
    The human cerebellum plays an important role in both motor and cognitive functions, and these functions have a topological mapping within the cerebellum. It is possible to use structural magnetic resonance imaging (MRI) to study the cerebellum since it is a non-invasive modality and provides good soft-tissue contrast. Deep learning (DL) techniques have been recently used to process medical images with great success. In this dissertation, we focus on developing DL algorithms to automatically parcellate the cerebellum---i.e., to divide the cerebellum into its sub-regions---from MRI images with both accuracy and efficiency in mind. With these algorithms, we can then study the morphological properties of cerebellar sub-regions to better understand the cerebellum. First, we developed ACAPULCO, a cerebellum parcellation algorithm based on convolutional neural networks (CNNs). It is the first DL algorithm that outperforms conventional methods, and it is being used around the world. We also experimented with incorporating anatomical knowledge into the network design as a potential improvement to ACAPULCO. Second, we parcellated over 2,000 T1-weighted MRI images using ACAPULCO to study the changes of the cerebellum during normal aging. We performed linear mixed-effect regressions of these sub-regional volumes to estimate their longitudinal trajectories. Our study is one step forward to better understand the cerebellum. Finally, we studied DL-based super-resolution (SR) to improve the quality of MRI images for better cerebellum parcellation. We proposed ESPRESO, an algorithm using a modified generative adversarial network to estimate the slice profiles of 2D multi-slice MRI images to measure their resolutions. We then improved an internally supervised SR algorithm and equipped it with ESPRESO for better SR performance. We further showed that ACAPULCO could be improved by taking super-resolved T2-weighted MRI images as input

    Semi-automated learning strategies for large-scale segmentation of histology and other big bioimaging stacks and volumes

    Get PDF
    Labelled high-resolution datasets are becoming increasingly common and necessary in different areas of biomedical imaging. Examples include: serial histology and ex-vivo MRI for atlas building, OCT for studying the human brain, and micro X-ray for tissue engineering. Labelling such datasets, typically, requires manual delineation of a very detailed set of regions of interest on a large number of sections or slices. This process is tedious, time-consuming, not reproducible and rather inefficient due to the high similarity of adjacent sections. In this thesis, I explore the potential of a semi-automated slice level segmentation framework and a suggestive region level framework which aim to speed up the segmentation process of big bioimaging datasets. The thesis includes two well validated, published, and widely used novel methods and one algorithm which did not yield an improvement compared to the current state-of the-art. The slice-wise method, SmartInterpol, consists of a probabilistic model for semi-automated segmentation of stacks of 2D images, in which the user manually labels a sparse set of sections (e.g., one every n sections), and lets the algorithm complete the segmentation for other sections automatically. The proposed model integrates in a principled manner two families of segmentation techniques that have been very successful in brain imaging: multi-atlas segmentation and convolutional neural networks. Labelling every structure on a sparse set of slices is not necessarily optimal, therefore I also introduce a region level active learning framework which requires the labeller to annotate one region of interest on one slice at the time. The framework exploits partial annotations, weak supervision, and realistic estimates of class and section-specific annotation effort in order to greatly reduce the time it takes to produce accurate segmentations for large histological datasets. Although both frameworks have been created targeting histological datasets, they have been successfully applied to other big bioimaging datasets, reducing labelling effort by up to 60−70% without compromising accuracy
    corecore