2,888 research outputs found

    Automated Security Analysis of Virtualized Infrastructures

    Get PDF
    Virtualization enables the increasing efficiency and elasticity of modern IT infrastructures, including Infrastructure as a Service. However, the operational complexity of virtualized infrastructures is high, due to their dynamics, multi-tenancy, and size. Misconfigurations and insider attacks carry significant operational and security risks, such as breaches in tenant isolation, which put both the infrastructure provider and tenants at risk. In this thesis we study the question if it is possible to model and analyze complex, scalable, and dynamic virtualized infrastructures with regard to user-defined security and operational policies in an automated way. We establish a new practical and automated security analysis framework for virtualized infrastructures. First, we propose a novel tool that automatically extracts the configuration of heterogeneous environments and builds up a unified graph model of the configuration and topology. The tool is further extended with a monitoring component and a set of algorithms that translates system changes to graph model changes. The benefits of maintaining such a dynamic model are time reduction for model population and closing the gap for transient security violations. Our analysis is the first that lifts static information flow analysis to the entire virtualized infrastructure, in order to detect isolation failures between tenants on all resources. The analysis is configurable using customized rules to reflect the different trust assumptions of the users. We apply and evaluate our analysis system on the production infrastructure of a global financial institution. For the information flow analysis of dynamic infrastructures we propose the concept of dynamic rule-based information flow graphs and develop a set of algorithms that maintain such information flow graphs for dynamic system models. We generalize the analysis of isolation properties and establish a new generic analysis platform for virtualized infrastructures that allows to express a diverse set of security and operational policies in a formal language. The policy requirements are studied in a case-study with a cloud service provider. We are the first to employ a variety of theorem provers and model checkers to verify the state of a virtualized infrastructure against its policies. Additionally, we analyze dynamic behavior such as VM migrations. For the analysis of dynamic infrastructures we pursue both a reactive as well as a proactive approach. A reactive analysis system is developed that reduces the time between system change and analysis result. The system monitors the infrastructure for changes and employs dynamic information flow graphs to verify, for instance, tenant isolation. For the proactive analysis we propose a new model, the Operations Transition Model, which captures the changes of operations in the virtualized infrastructure as graph transformations. We build a novel analysis system using this model that performs automated run-time analysis of operations and also offers change planning. The operations transition model forms the basis for further research in model checking of virtualized infrastructures

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results

    Deliverable JRA1.1: Evaluation of current network control and management planes for multi-domain network infrastructure

    Get PDF
    This deliverable includes a compilation and evaluation of available control and management architectures and protocols applicable to a multilayer infrastructure in a multi-domain Virtual Network environment.The scope of this deliverable is mainly focused on the virtualisation of the resources within a network and at processing nodes. The virtualization of the FEDERICA infrastructure allows the provisioning of its available resources to users by means of FEDERICA slices. A slice is seen by the user as a real physical network under his/her domain, however it maps to a logical partition (a virtual instance) of the physical FEDERICA resources. A slice is built to exhibit to the highest degree all the principles applicable to a physical network (isolation, reproducibility, manageability, ...). Currently, there are no standard definitions available for network virtualization or its associated architectures. Therefore, this deliverable proposes the Virtual Network layer architecture and evaluates a set of Management- and Control Planes that can be used for the partitioning and virtualization of the FEDERICA network resources. This evaluation has been performed taking into account an initial set of FEDERICA requirements; a possible extension of the selected tools will be evaluated in future deliverables. The studies described in this deliverable define the virtual architecture of the FEDERICA infrastructure. During this activity, the need has been recognised to establish a new set of basic definitions (taxonomy) for the building blocks that compose the so-called slice, i.e. the virtual network instantiation (which is virtual with regard to the abstracted view made of the building blocks of the FEDERICA infrastructure) and its architectural plane representation. These definitions will be established as a common nomenclature for the FEDERICA project. Other important aspects when defining a new architecture are the user requirements. It is crucial that the resulting architecture fits the demands that users may have. Since this deliverable has been produced at the same time as the contact process with users, made by the project activities related to the Use Case definitions, JRA1 has proposed a set of basic Use Cases to be considered as starting point for its internal studies. When researchers want to experiment with their developments, they need not only network resources on their slices, but also a slice of the processing resources. These processing slice resources are understood as virtual machine instances that users can use to make them behave as software routers or end nodes, on which to download the software protocols or applications they have produced and want to assess in a realistic environment. Hence, this deliverable also studies the APIs of several virtual machine management software products in order to identify which best suits FEDERICA’s needs.Postprint (published version

    Automated Verification of Virtualized Infrastructures

    Get PDF
    Virtualized infrastructures and clouds present new challenges for security analysis and formal verification: they are complex environments that continuously change their shape, and that give rise to non-trivial security goals such as isolation and failure resilience requirements. We present a platform that connects declarative and expressive description languages with state-of-the art verification methods. The languages integrate homogeneously descriptions of virtualized infras-tructures, their transformations, their desired goals, and evaluation strategies. The different verification tools range from model checking to theorem proving; this allows us to exploit the complementary strengths of methods, and also to understand how to best represent the analysis problems in different contexts. We consider first the static case where the topology of the virtual infrastructure is fixed and demonstrate that our platform allows for the declarative specification of a large class of properties. Even though tools that are special-ized to checking particular properties perform better than our generic approach, we show with a real-world case study that our approach is practically feasible. We finally consider also the dynamic case where the intruder can actively change the topology (by migrating machines). The combination of a complex topology and changes to it by an intruder is a problem that lies beyond the scope of previous analysis tools and to which we can give first positive verification results

    Autonomic Cloud Computing: Open Challenges and Architectural Elements

    Full text link
    As Clouds are complex, large-scale, and heterogeneous distributed systems, management of their resources is a challenging task. They need automated and integrated intelligent strategies for provisioning of resources to offer services that are secure, reliable, and cost-efficient. Hence, effective management of services becomes fundamental in software platforms that constitute the fabric of computing Clouds. In this direction, this paper identifies open issues in autonomic resource provisioning and presents innovative management techniques for supporting SaaS applications hosted on Clouds. We present a conceptual architecture and early results evidencing the benefits of autonomic management of Clouds.Comment: 8 pages, 6 figures, conference keynote pape

    On Evaluating Commercial Cloud Services: A Systematic Review

    Full text link
    Background: Cloud Computing is increasingly booming in industry with many competing providers and services. Accordingly, evaluation of commercial Cloud services is necessary. However, the existing evaluation studies are relatively chaotic. There exists tremendous confusion and gap between practices and theory about Cloud services evaluation. Aim: To facilitate relieving the aforementioned chaos, this work aims to synthesize the existing evaluation implementations to outline the state-of-the-practice and also identify research opportunities in Cloud services evaluation. Method: Based on a conceptual evaluation model comprising six steps, the Systematic Literature Review (SLR) method was employed to collect relevant evidence to investigate the Cloud services evaluation step by step. Results: This SLR identified 82 relevant evaluation studies. The overall data collected from these studies essentially represent the current practical landscape of implementing Cloud services evaluation, and in turn can be reused to facilitate future evaluation work. Conclusions: Evaluation of commercial Cloud services has become a world-wide research topic. Some of the findings of this SLR identify several research gaps in the area of Cloud services evaluation (e.g., the Elasticity and Security evaluation of commercial Cloud services could be a long-term challenge), while some other findings suggest the trend of applying commercial Cloud services (e.g., compared with PaaS, IaaS seems more suitable for customers and is particularly important in industry). This SLR study itself also confirms some previous experiences and reveals new Evidence-Based Software Engineering (EBSE) lessons

    Grid Infrastructure for Domain Decomposition Methods in Computational ElectroMagnetics

    Get PDF
    The accurate and efficient solution of Maxwell's equation is the problem addressed by the scientific discipline called Computational ElectroMagnetics (CEM). Many macroscopic phenomena in a great number of fields are governed by this set of differential equations: electronic, geophysics, medical and biomedical technologies, virtual EM prototyping, besides the traditional antenna and propagation applications. Therefore, many efforts are focussed on the development of new and more efficient approach to solve Maxwell's equation. The interest in CEM applications is growing on. Several problems, hard to figure out few years ago, can now be easily addressed thanks to the reliability and flexibility of new technologies, together with the increased computational power. This technology evolution opens the possibility to address large and complex tasks. Many of these applications aim to simulate the electromagnetic behavior, for example in terms of input impedance and radiation pattern in antenna problems, or Radar Cross Section for scattering applications. Instead, problems, which solution requires high accuracy, need to implement full wave analysis techniques, e.g., virtual prototyping context, where the objective is to obtain reliable simulations in order to minimize measurement number, and as consequence their cost. Besides, other tasks require the analysis of complete structures (that include an high number of details) by directly simulating a CAD Model. This approach allows to relieve researcher of the burden of removing useless details, while maintaining the original complexity and taking into account all details. Unfortunately, this reduction implies: (a) high computational effort, due to the increased number of degrees of freedom, and (b) worsening of spectral properties of the linear system during complex analysis. The above considerations underline the needs to identify appropriate information technologies that ease solution achievement and fasten required elaborations. The authors analysis and expertise infer that Grid Computing techniques can be very useful to these purposes. Grids appear mainly in high performance computing environments. In this context, hundreds of off-the-shelf nodes are linked together and work in parallel to solve problems, that, previously, could be addressed sequentially or by using supercomputers. Grid Computing is a technique developed to elaborate enormous amounts of data and enables large-scale resource sharing to solve problem by exploiting distributed scenarios. The main advantage of Grid is due to parallel computing, indeed if a problem can be split in smaller tasks, that can be executed independently, its solution calculation fasten up considerably. To exploit this advantage, it is necessary to identify a technique able to split original electromagnetic task into a set of smaller subproblems. The Domain Decomposition (DD) technique, based on the block generation algorithm introduced in Matekovits et al. (2007) and Francavilla et al. (2011), perfectly addresses our requirements (see Section 3.4 for details). In this chapter, a Grid Computing infrastructure is presented. This architecture allows parallel block execution by distributing tasks to nodes that belong to the Grid. The set of nodes is composed by physical machines and virtualized ones. This feature enables great flexibility and increase available computational power. Furthermore, the presence of virtual nodes allows a full and efficient Grid usage, indeed the presented architecture can be used by different users that run different applications
    corecore