4,126 research outputs found

    Automated reuse of model transformations through typing requirements models

    Full text link
    Model transformations are key elements of model-driven engineering, where they are used to automate the manipulation of models. However, they are typed with respect to concrete source and target meta-models, making their reuse for other (even similar) meta-models challenging. To improve this situation, we propose capturing the typing requirements for reusing a transformation with other meta-models by the notion of a typing requirements model (TRM). A TRM describes the prerequisites that amodel transformation imposes on the source and targetmeta-models to obtain a correct typing. The key observation is that any meta-model pair that satisfies the TRM is a valid reuse context for the transformation at hand. A TRM is made of two domain requirement models (DRMs) describing the requirements for the source and target meta-models, and a compatibility model expressing dependencies between them. We define a notion of refinement between DRMs and see meta-models as a special case of DRM. We provide a catalogue of valid refinements and describe how to automatically extract a TRM from an ATL transformation. The approach is supported by our tool TOTEM. We report on two experiments-based on transformations developed by third parties and meta-model mutation techniques-validating the correctness and completeness of our TRM extraction procedure and confirming the power of TRMs to encode variability and support flexible reuseWork partially funded by the R&D programme of the Madrid Region (project FORTE, S2018/TCS4314), the Spanish Ministry of Science (project MASSIVE, RTI2018-095255-B-I00), the Spanish MINECO(project RECOM, TIN2015-73968-JIN, AEI/FEDER/UE), a Ramón y Cajal 2017 grant, and the European Union Horizon 2020 research and innovation programme through the Polyglot and Hybrid Persistence Architectures for Big Data Analytics (TYPHON) project (#780251

    A heuristic-based approach to code-smell detection

    Get PDF
    Encapsulation and data hiding are central tenets of the object oriented paradigm. Deciding what data and behaviour to form into a class and where to draw the line between its public and private details can make the difference between a class that is an understandable, flexible and reusable abstraction and one which is not. This decision is a difficult one and may easily result in poor encapsulation which can then have serious implications for a number of system qualities. It is often hard to identify such encapsulation problems within large software systems until they cause a maintenance problem (which is usually too late) and attempting to perform such analysis manually can also be tedious and error prone. Two of the common encapsulation problems that can arise as a consequence of this decomposition process are data classes and god classes. Typically, these two problems occur together – data classes are lacking in functionality that has typically been sucked into an over-complicated and domineering god class. This paper describes the architecture of a tool which automatically detects data and god classes that has been developed as a plug-in for the Eclipse IDE. The technique has been evaluated in a controlled study on two large open source systems which compare the tool results to similar work by Marinescu, who employs a metrics-based approach to detecting such features. The study provides some valuable insights into the strengths and weaknesses of the two approache

    Reverse engineering of model transformations for reusability

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-08789-4_14Proceedings of 7th International Conference, ICMT 2014, Held as Part of STAF 2014, York, UK, July 21-22, 2014Reuse techniques are key for the industrial adoption of Model-Driven Engineering (MDE). However, while reusability has been successfully applied to programming languages, its use is scarce in MDE and, in particular, in model transformations. In previous works, we developed an approach that enables the reuse of model transformations for different meta-models. This is achieved by defining reusable components that encapsulate a generic transformation template and expose an interface called concept declaring the structural requirements that any meta-model using the component should fulfil. Binding the concept to one of such meta-models induces an adaptation of the template, which becomes applicable to the meta-model. To facilitate reuse, concepts need to be concise, reflecting only the minimal set of requirements demanded by the transformation. In this paper, we automate the reverse engineering of existing transformations into reusable transformation components. To make a transformation reusable, we use the information obtained from its static analysis to derive a concept that is minimal with respect to the transformation and maximizes its reuse opportunities, and then evolve the transformation accordingly. The paper describes a prototype implementation and an evaluation using transformations from the ATL zoo.This work has been funded by the Spanish Ministry of Economy and Competitivity with project “Go Lite” (TIN2011-24139

    Facet-oriented Modelling

    Full text link
    © ACM 2021. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in ACM Transactions on Software Engineering and Methodology, http://dx.doi.org/10.1145/10.1145/3428076Models are the central assets in model-driven engineering (MDE), as they are actively used in all phases of software development. Models are built using metamodel-based languages, and so objects in models are typed by a metamodel class. This typing is static, established at creation time, and cannot be changed later. Therefore, objects in MDE are closed and fixed with respect to the class they conform to, the fields they have, and the well-formedness constraints they must comply with. This hampers many MDE activities, like the reuse of model-related artefacts such as transformations, the opportunistic or dynamic combination of metamodels, or the dynamic reconfiguration of models. To alleviate this rigidity, we propose making model objects open so that they can acquire or drop so-called facets. These contribute with a type, fields and constraints to the objects holding them. Facets are defined by regular metamodels, hence being a lightweight extension of standard metamodelling. Facet metamodels may declare usage interfaces, as well as laws that govern the assignment of facets to objects (or classes). This article describes our proposal, reporting on a theory, analysis techniques, and an implementation. The benefits of the approach are validated on the basis of five case studies dealing with annotation models, transformation reuse, multi-view modelling, multi-level modelling, and language product linesWork partially funded by the R&D programme of the Madrid Region (project FORTE, S2018/TCS-4314) and the Spanish Ministry of Science (project MASSIVE, RTI2018-095255-B-I00

    Programming MPSoC platforms: Road works ahead

    Get PDF
    This paper summarizes a special session on multicore/multi-processor system-on-chip (MPSoC) programming challenges. The current trend towards MPSoC platforms in most computing domains does not only mean a radical change in computer architecture. Even more important from a SW developer´s viewpoint, at the same time the classical sequential von Neumann programming model needs to be overcome. Efficient utilization of the MPSoC HW resources demands for radically new models and corresponding SW development tools, capable of exploiting the available parallelism and guaranteeing bug-free parallel SW. While several standards are established in the high-performance computing domain (e.g. OpenMP), it is clear that more innovations are required for successful\ud deployment of heterogeneous embedded MPSoC. On the other hand, at least for coming years, the freedom for disruptive programming technologies is limited by the huge amount of certified sequential code that demands for a more pragmatic, gradual tool and code replacement strategy

    Model Transformation Languages with Modular Information Hiding

    Get PDF
    Model transformations, together with models, form the principal artifacts in model-driven software development. Industrial practitioners report that transformations on larger models quickly get sufficiently large and complex themselves. To alleviate entailed maintenance efforts, this thesis presents a modularity concept with explicit interfaces, complemented by software visualization and clustering techniques. All three approaches are tailored to the specific needs of the transformation domain
    corecore