34 research outputs found

    Towards Next Generation Sequential and Parallel SAT Solvers

    Get PDF
    This thesis focuses on improving the SAT solving technology. The improvements focus on two major subjects: sequential SAT solving and parallel SAT solving. To better understand sequential SAT algorithms, the abstract reduction system Generic CDCL is introduced. With Generic CDCL, the soundness of solving techniques can be modeled. Next, the conflict driven clause learning algorithm is extended with the three techniques local look-ahead, local probing and all UIP learning that allow more global reasoning during search. These techniques improve the performance of the sequential SAT solver Riss. Then, the formula simplification techniques bounded variable addition, covered literal elimination and an advanced cardinality constraint extraction are introduced. By using these techniques, the reasoning of the overall SAT solving tool chain becomes stronger than plain resolution. When using these three techniques in the formula simplification tool Coprocessor before using Riss to solve a formula, the performance can be improved further. Due to the increasing number of cores in CPUs, the scalable parallel SAT solving approach iterative partitioning has been implemented in Pcasso for the multi-core architecture. Related work on parallel SAT solving has been studied to extract main ideas that can improve Pcasso. Besides parallel formula simplification with bounded variable elimination, the major extension is the extended clause sharing level based clause tagging, which builds the basis for conflict driven node killing. The latter allows to better identify unsatisfiable search space partitions. Another improvement is to combine scattering and look-ahead as a superior search space partitioning function. In combination with Coprocessor, the introduced extensions increase the performance of the parallel solver Pcasso. The implemented system turns out to be scalable for the multi-core architecture. Hence iterative partitioning is interesting for future parallel SAT solvers. The implemented solvers participated in international SAT competitions. In 2013 and 2014 Pcasso showed a good performance. Riss in combination with Copro- cessor won several first, second and third prices, including two Kurt-Gödel-Medals. Hence, the introduced algorithms improved modern SAT solving technology

    Even Shorter Proofs Without New Variables

    Get PDF

    Effective Auxiliary Variables via Structured Reencoding

    Get PDF
    Extended resolution shows that auxiliary variables are very powerful in theory. However, attempts to exploit this potential in practice have had limited success. One reasonably effective method in this regard is bounded variable addition (BVA), which automatically reencodes formulas by introducing new variables and eliminating clauses, often significantly reducing formula size. We find motivating examples suggesting that the performance improvement caused by BVA stems not only from this size reduction but also from the introduction of effective auxiliary variables. Analyzing specific packing-coloring instances, we discover that BVA is fragile with respect to formula randomization, relying on variable order to break ties. With this understanding, we augment BVA with a heuristic for breaking ties in a structured way. We evaluate our new preprocessing technique, Structured BVA (SBVA), on more than 29 000 formulas from previous SAT competitions and show that it is robust to randomization. In a simulated competition setting, our implementation outperforms BVA on both randomized and original formulas, and appears to be well-suited for certain families of formulas

    Even shorter proofs without new variables

    Full text link
    Proof formats for SAT solvers have diversified over the last decade, enabling new features such as extended resolution-like capabilities, very general extension-free rules, inclusion of proof hints, and pseudo-boolean reasoning. Interference-based methods have been proven effective, and some theoretical work has been undertaken to better explain their limits and semantics. In this work, we combine the subsumption redundancy notion from (Buss, Thapen 2019) and the overwrite logic framework from (Rebola-Pardo, Suda 2018). Natural generalizations then become apparent, enabling even shorter proofs of the pigeonhole principle (compared to those from (Heule, Kiesl, Biere 2017)) and smaller unsatisfiable core generation.Comment: 21 page

    MaxPre : An Extended MaxSAT Preprocessor

    Get PDF
    We describe MaxPre, an open-source preprocessor for (weighted partial) maximum satisfiability (MaxSAT). MaxPre implements both SAT-based and MaxSAT-specific preprocessing techniques, and offers solution reconstruction, cardinality constraint encoding, and an API for tight integration into SAT-based MaxSAT solvers.Peer reviewe
    corecore