18,214 research outputs found

    Interpolation in local theory extensions

    Full text link
    In this paper we study interpolation in local extensions of a base theory. We identify situations in which it is possible to obtain interpolants in a hierarchical manner, by using a prover and a procedure for generating interpolants in the base theory as black-boxes. We present several examples of theory extensions in which interpolants can be computed this way, and discuss applications in verification, knowledge representation, and modular reasoning in combinations of local theories.Comment: 31 pages, 1 figur

    On Deciding Local Theory Extensions via E-matching

    Full text link
    Satisfiability Modulo Theories (SMT) solvers incorporate decision procedures for theories of data types that commonly occur in software. This makes them important tools for automating verification problems. A limitation frequently encountered is that verification problems are often not fully expressible in the theories supported natively by the solvers. Many solvers allow the specification of application-specific theories as quantified axioms, but their handling is incomplete outside of narrow special cases. In this work, we show how SMT solvers can be used to obtain complete decision procedures for local theory extensions, an important class of theories that are decidable using finite instantiation of axioms. We present an algorithm that uses E-matching to generate instances incrementally during the search, significantly reducing the number of generated instances compared to eager instantiation strategies. We have used two SMT solvers to implement this algorithm and conducted an extensive experimental evaluation on benchmarks derived from verification conditions for heap-manipulating programs. We believe that our results are of interest to both the users of SMT solvers as well as their developers

    Multi-Paradigm Reasoning for Access to Heterogeneous GIS

    Get PDF
    Accessing and querying geographical data in a uniform way has become easier in recent years. Emerging standards like WFS turn the web into a geospatial web services enabled place. Mediation architectures like VirGIS overcome syntactical and semantical heterogeneity between several distributed sources. On mobile devices, however, this kind of solution is not suitable, due to limitations, mostly regarding bandwidth, computation power, and available storage space. The aim of this paper is to present a solution for providing powerful reasoning mechanisms accessible from mobile applications and involving data from several heterogeneous sources. By adapting contents to time and location, mobile web information systems can not only increase the value and suitability of the service itself, but can substantially reduce the amount of data delivered to users. Because many problems pertain to infrastructures and transportation in general and to way finding in particular, one cornerstone of the architecture is higher level reasoning on graph networks with the Multi-Paradigm Location Language MPLL. A mediation architecture is used as a “graph provider” in order to transfer the load of computation to the best suited component – graph construction and transformation for example being heavy on resources. Reasoning in general can be conducted either near the “source” or near the end user, depending on the specific use case. The concepts underlying the proposal described in this paper are illustrated by a typical and concrete scenario for web applications

    Ontology-based composition and matching for dynamic cloud service coordination

    Get PDF
    Recent cross-organisational software service offerings, such as cloud computing, create higher integration needs. In particular, services are combined through brokers and mediators, solutions to allow individual services to collaborate and their interaction to be coordinated are required. The need to address dynamic management - caused by cloud and on-demand environments - can be addressed through service coordination based on ontology-based composition and matching techniques. Our solution to composition and matching utilises a service coordination space that acts as a passive infrastructure for collaboration where users submit requests that are then selected and taken on by providers. We discuss the information models and the coordination principles of such a collaboration environment in terms of an ontology and its underlying description logics. We provide ontology-based solutions for structural composition of descriptions and matching between requested and provided services

    On the Expressivity and Applicability of Model Representation Formalisms

    Get PDF
    A number of first-order calculi employ an explicit model representation formalism for automated reasoning and for detecting satisfiability. Many of these formalisms can represent infinite Herbrand models. The first-order fragment of monadic, shallow, linear, Horn (MSLH) clauses, is such a formalism used in the approximation refinement calculus. Our first result is a finite model property for MSLH clause sets. Therefore, MSLH clause sets cannot represent models of clause sets with inherently infinite models. Through a translation to tree automata, we further show that this limitation also applies to the linear fragments of implicit generalizations, which is the formalism used in the model-evolution calculus, to atoms with disequality constraints, the formalisms used in the non-redundant clause learning calculus (NRCL), and to atoms with membership constraints, a formalism used for example in decision procedures for algebraic data types. Although these formalisms cannot represent models of clause sets with inherently infinite models, through an additional approximation step they can. This is our second main result. For clause sets including the definition of an equivalence relation with the help of an additional, novel approximation, called reflexive relation splitting, the approximation refinement calculus can automatically show satisfiability through the MSLH clause set formalism.Comment: 15 page

    On the Expressivity and Applicability of Model Representation Formalisms

    No full text
    A number of first-order calculi employ an explicit model representation formalism for automated reasoning and for detecting satisfiability. Many of these formalisms can represent infinite Herbrand models. The first-order fragment of monadic, shallow, linear, Horn (MSLH) clauses, is such a formalism used in the approximation refinement calculus. Our first result is a finite model property for MSLH clause sets. Therefore, MSLH clause sets cannot represent models of clause sets with inherently infinite models. Through a translation to tree automata, we further show that this limitation also applies to the linear fragments of implicit generalizations, which is the formalism used in the model-evolution calculus, to atoms with disequality constraints, the formalisms used in the non-redundant clause learning calculus (NRCL), and to atoms with membership constraints, a formalism used for example in decision procedures for algebraic data types. Although these formalisms cannot represent models of clause sets with inherently infinite models, through an additional approximation step they can. This is our second main result. For clause sets including the definition of an equivalence relation with the help of an additional, novel approximation, called reflexive relation splitting, the approximation refinement calculus can automatically show satisfiability through the MSLH clause set formalism

    On Automated Lemma Generation for Separation Logic with Inductive Definitions

    Get PDF
    Separation Logic with inductive definitions is a well-known approach for deductive verification of programs that manipulate dynamic data structures. Deciding verification conditions in this context is usually based on user-provided lemmas relating the inductive definitions. We propose a novel approach for generating these lemmas automatically which is based on simple syntactic criteria and deterministic strategies for applying them. Our approach focuses on iterative programs, although it can be applied to recursive programs as well, and specifications that describe not only the shape of the data structures, but also their content or their size. Empirically, we find that our approach is powerful enough to deal with sophisticated benchmarks, e.g., iterative procedures for searching, inserting, or deleting elements in sorted lists, binary search tress, red-black trees, and AVL trees, in a very efficient way
    • 

    corecore