41 research outputs found

    Formalizing Soundness Proofs of SNARKs

    Get PDF
    Succinct Non-interactive Arguments of Knowledge (SNARKs) have seen interest and development from the cryptographic community over recent years, and there are now constructions with very small proof size designed to work well in practice. A SNARK protocol can only be widely accepted as secure, however, if a rigorous proof of its security properties has been vetted by the community. Even then, it is sometimes the case that these security proofs are flawed, and it is then necessary for further research to identify these flaws and correct the record. To increase the rigor of these proofs, we turn to formal methods. Focusing on the soundness aspect of a widespread class of SNARKs, we formalize proofs for six different constructions, including the well-known Groth \u2716. Our codebase is written in the Lean 3 theorem proving language, and uses a variety of techniques to simplify and automate these proofs as much as possible

    Certifying Correctness for Combinatorial Algorithms : by Using Pseudo-Boolean Reasoning

    Get PDF
    Over the last decades, dramatic improvements in combinatorialoptimisation algorithms have significantly impacted artificialintelligence, operations research, and other areas. These advances,however, are achieved through highly sophisticated algorithms that aredifficult to verify and prone to implementation errors that can causeincorrect results. A promising approach to detect wrong results is touse certifying algorithms that produce not only the desired output butalso a certificate or proof of correctness of the output. An externaltool can then verify the proof to determine that the given answer isvalid. In the Boolean satisfiability (SAT) community, this concept iswell established in the form of proof logging, which has become thestandard solution for generating trustworthy outputs. The problem isthat there are still some SAT solving techniques for which prooflogging is challenging and not yet used in practice. Additionally,there are many formalisms more expressive than SAT, such as constraintprogramming, various graph problems and maximum satisfiability(MaxSAT), for which efficient proof logging is out of reach forstate-of-the-art techniques.This work develops a new proof system building on the cutting planesproof system and operating on pseudo-Boolean constraints (0-1 linearinequalities). We explain how such machine-verifiable proofs can becreated for various problems, including parity reasoning, symmetry anddominance breaking, constraint programming, subgraph isomorphism andmaximum common subgraph problems, and pseudo-Boolean problems. Weimplement and evaluate the resulting algorithms and a verifier for theproof format, demonstrating that the approach is practical for a widerange of problems. We are optimistic that the proposed proof system issuitable for designing certifying variants of algorithms inpseudo-Boolean optimisation, MaxSAT and beyond

    A Maximum Satisfiability Based Approach to Bi-Objective Boolean Optimization

    Get PDF
    Many real-world problem settings give rise to NP-hard combinatorial optimization problems. This results in a need for non-trivial algorithmic approaches for finding optimal solutions to such problems. Many such approaches—ranging from probabilistic and meta-heuristic algorithms to declarative programming—have been presented for optimization problems with a single objective. Less work has been done on approaches for optimization problems with multiple objectives. We present BiOptSat, an exact declarative approach for finding so-called Pareto-optimal solutions to bi-objective optimization problems. A bi-objective optimization problem arises for example when learning interpretable classifiers and the size, as well as the classification error of the classifier should be taken into account as objectives. Using propositional logic as a declarative programming language, we seek to extend the progress and success in maximum satisfiability (MaxSAT) solving to two objectives. BiOptSat can be viewed as an instantiation of the lexicographic method and makes use of a single SAT solver that is preserved throughout the entire search procedure. It allows for solving three tasks for bi-objective optimization: finding a single Pareto-optimal solution, finding one representative solution for each Pareto point, and enumerating all Pareto-optimal solutions. We provide an open-source implementation of five variants of BiOptSat, building on different algorithms proposed for MaxSAT. Additionally, we empirically evaluate these five variants, comparing their runtime performance to that of three key competing algorithmic approaches. The empirical comparison in the contexts of learning interpretable decision rules and bi-objective set covering shows practical benefits of our approach. Furthermore, for the best-performing variant of BiOptSat, we study the effects of proposed refinements to determine their effectiveness

    MaxSAT-Based Bi-Objective Boolean Optimization

    Get PDF
    Peer reviewe

    Automated Reasoning

    Get PDF
    This volume, LNAI 13385, constitutes the refereed proceedings of the 11th International Joint Conference on Automated Reasoning, IJCAR 2022, held in Haifa, Israel, in August 2022. The 32 full research papers and 9 short papers presented together with two invited talks were carefully reviewed and selected from 85 submissions. The papers focus on the following topics: Satisfiability, SMT Solving,Arithmetic; Calculi and Orderings; Knowledge Representation and Jutsification; Choices, Invariance, Substitutions and Formalization; Modal Logics; Proofs System and Proofs Search; Evolution, Termination and Decision Prolems. This is an open access book

    Adding Causal Relationships to DL-based Action Formalisms

    Get PDF
    In the reasoning about actions community, causal relationships have been proposed as a possible approach for solving the ramification problem, i. e., the problem of how to deal with indirect effects of actions. In this paper, we show that causal relationships can be added to action formalisms based on Description Logics without destroying the decidability of the consistency and the projection problem

    Improvements to the Implicit Hitting Set Approach to Pseudo-Boolean Optimization

    Get PDF
    Peer reviewe

    Pseudo-Booleanilainen optimisaatio käyttäen implisiittisiä osumisjoukkoja

    Get PDF
    There are many computationally difficult problems where the task is to find a solution with the lowest cost possible that fulfills a given set of constraints. Such problems are often NP-hard and are encountered in a variety of real-world problem domains, including planning and scheduling. NP-hard problems are often solved using a declarative approach by encoding the problem into a declarative constraint language and solving the encoding using a generic algorithm for that language. In this thesis we focus on pseudo-Boolean optimization (PBO), a special class of integer programs (IP) that only contain variables that admit the values 0 and 1. We propose a novel approach to PBO that is based on the implicit hitting set (IHS) paradigm, which uses two separate components. An IP solver is used to find an optimal solution under an incomplete set of constraints. A pseudo-Boolean satisfiability solver is used to either validate the feasibility of the solution or to extract more constraints to the integer program. The IHS-based PBO algorithm iteratively invokes the two algorithms until an optimal solution to a given PBO instance is found. In this thesis we lay out the IHS-based PBO solving approach in detail. We implement the algorithm as the PBO-IHS solver by making use of recent advances in reasoning techniques for pseudo-Boolean constraints. Through extensive empirical evaluation we show that our PBO-IHS solver outperforms other available specialized PBO solvers and has complementary performance compared to classical integer programming techniques

    Automated Deduction – CADE 28

    Get PDF
    This open access book constitutes the proceeding of the 28th International Conference on Automated Deduction, CADE 28, held virtually in July 2021. The 29 full papers and 7 system descriptions presented together with 2 invited papers were carefully reviewed and selected from 76 submissions. CADE is the major forum for the presentation of research in all aspects of automated deduction, including foundations, applications, implementations, and practical experience. The papers are organized in the following topics: Logical foundations; theory and principles; implementation and application; ATP and AI; and system descriptions
    corecore