5 research outputs found

    Automated QuantMap for rapid quantitative molecular network topology analysis

    Get PDF
    ABSTRACT Summary: The previously disclosed QuantMap method for grouping chemicals by biological activity used online services for much of the data gathering and some of the numerical analysis. The present work attempts to streamline this process by using local copies of the databases and in-house analysis. Using computational methods similar or identical to those used in the previous work, a qualitatively equivalent result was found in just a few seconds on the same dataset (collection of 18 drugs). We use the user-friendly Galaxy framework to enable users to analyze their own datasets. Hopefully, this will make the QuantMap method more practical and accessible and help achieve its goals to provide substantial assistance to drug repositioning, pharmacology evaluation and toxicology risk assessment. Availability: http:

    STITCH 4: integration of protein-chemical interactions with user data

    Get PDF
    STITCH is a database of protein-chemical interactions that integrates many sources of experimental and manually curated evidence with text-mining information and interaction predictions. Available at http://stitch.embl.de, the resulting interaction network includes 390 000 chemicals and 3.6 million proteins from 1133 organisms. Compared with the previous version, the number of high-confidence protein-chemical interactions in human has increased by 45%, to 367 000. In this version, we added features for users to upload their own data to STITCH in the form of internal identifiers, chemical structures or quantitative data. For example, a user can now upload a spreadsheet with screening hits to easily check which interactions are already known. To increase the coverage of STITCH, we expanded the text mining to include full-text articles and added a prediction method based on chemical structures. We further changed our scheme for transferring interactions between species to rely on orthology rather than protein similarity. This improves the performance within protein families, where scores are now transferred only to orthologous proteins, but not to paralogous proteins. STITCH can be accessed with a web-interface, an API and downloadable files

    STITCH 4: integration of protein-chemical interactions with user data

    Get PDF
    STITCH is a database of protein-chemical interactions that integrates many sources of experimental and manually curated evidence with text-mining information and interaction predictions. Available at http://stitch.embl.de, the resulting interaction network includes 390 000 chemicals and 3.6 million proteins from 1133 organisms. Compared with the previous version, the number of high-confidence protein-chemical interactions in human has increased by 45%, to 367 000. In this version, we added features for users to upload their own data to STITCH in the form of internal identifiers, chemical structures or quantitative data. For example, a user can now upload a spreadsheet with screening hits to easily check which interactions are already known. To increase the coverage of STITCH, we expanded the text mining to include full-text articles and added a prediction method based on chemical structures. We further changed our scheme for transferring interactions between species to rely on orthology rather than protein similarity. This improves the performance within protein families, where scores are now transferred only to orthologous proteins, but not to paralogous proteins. STITCH can be accessed with a web-interface, an API and downloadable file

    Automated QuantMap for rapid quantitative molecular network topology analysis

    No full text
    SUMMARY: The previously disclosed QuantMap method for grouping chemicals by biological activity used online services for much of the data gathering and some of the numerical analysis. The present work attempts to streamline this process by using local copies of the databases and in-house analysis. Using computational methods similar or identical to those used in the previous work, a qualitatively equivalent result was found in just a few seconds on the same dataset (collection of 18 drugs). We use the user-friendly Galaxy framework to enable users to analyze their own datasets. Hopefully, this will make the QuantMap method more practical and accessible and help achieve its goals to provide substantial assistance to drug repositioning, pharmacology evaluation and toxicology risk assessment. AVAILABILITY: http://galaxy.predpharmtox.org CONTACT: [email protected] or [email protected] SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online
    corecore