30 research outputs found

    Instructional strategies in explicating the discovery function of proof for lower secondary school students

    No full text
    In this paper, we report on the analysis of teaching episodes selected from our pedagogical and cognitive research on geometry teaching that illustrate how carefully-chosen instructional strategies can guide Grade 8 students to see and appreciate the discovery function of proof in geometr

    The art and architecture of mathematics education: a study in metaphors

    Get PDF
    This chapter presents the summary of a talk given at the Eighth European Summer University, held in Oslo in 2018. It attempts to show how art, literature, and history, can paint images of mathematics that are not only useful but relevant to learners as they can support their personal development as well as their appreciation of mathematics as a discipline. To achieve this goal, several metaphors about and of mathematics are explored

    Proceedings of the tenth international conference Models in developing mathematics education: September 11 - 17, 2009, Dresden, Saxony, Germany

    Get PDF
    This volume contains the papers presented at the International Conference on “Models in Developing Mathematics Education” held from September 11-17, 2009 at The University of Applied Sciences, Dresden, Germany. The Conference was organized jointly by The University of Applied Sciences and The Mathematics Education into the 21st Century Project - a non-commercial international educational project founded in 1986. The Mathematics Education into the 21st Century Project is dedicated to the improvement of mathematics education world-wide through the publication and dissemination of innovative ideas. Many prominent mathematics educators have supported and contributed to the project, including the late Hans Freudental, Andrejs Dunkels and Hilary Shuard, as well as Bruce Meserve and Marilyn Suydam, Alan Osborne and Margaret Kasten, Mogens Niss, Tibor Nemetz, Ubi D’Ambrosio, Brian Wilson, Tatsuro Miwa, Henry Pollack, Werner Blum, Roberto Baldino, Waclaw Zawadowski, and many others throughout the world. Information on our project and its future work can be found on Our Project Home Page http://math.unipa.it/~grim/21project.htm It has been our pleasure to edit all of the papers for these Proceedings. Not all papers are about research in mathematics education, a number of them report on innovative experiences in the classroom and on new technology. We believe that “mathematics education” is fundamentally a “practicum” and in order to be “successful” all new materials, new ideas and new research must be tested and implemented in the classroom, the real “chalk face” of our discipline, and of our profession as mathematics educators. These Proceedings begin with a Plenary Paper and then the contributions of the Principal Authors in alphabetical name order. We sincerely thank all of the contributors for their time and creative effort. It is clear from the variety and quality of the papers that the conference has attracted many innovative mathematics educators from around the world. These Proceedings will therefore be useful in reviewing past work and looking ahead to the future

    The Common Link: An Exploration of the Social Cognitive Dimensions of Meaning-Making in Algebra and the Visual Arts Using a Case Study Approach

    Get PDF
    It is commonplace to hold that algebra and the visual arts are mutually exclusive activities. In this thesis, an attempt was made to connect how we learn in algebra and the visual arts from the social cognitive perspective proposed by Bandura (1986, 1997). That is, the personal, social, and behavioural dimensions of learning in algebra and the visual arts were considered. Also, the issue of a connection between algebra and the visual arts was tackled by taking into account the most recent advances in cognitive science, like the situated movement, the notion, in a nutshell, that cognition is extended throughout our social relations and practices. Making the connection between, what Snow (1959) called generally the two cultures (cited in Stent, 2001, p. 31) of art and science, has precedence. There have been attempts, as interpreted in this thesis, to consider what learning in the arts and sciences have in common from various quarters, be they philosophical, psychological, or historical. Identifying the link between algebra and the visual arts involved several things. First, the historical context for the schism between our understanding of learning in algebra and the visual arts was considered. Second, a detailed review-cum-analysis of the literature was undertaken, and this yielded the themes upon which the connections between algebra and the visual arts were made. Turning to the fieldwork, four probing case studies were utilized to explore how those in algebra or the visual arts learn in their fields. By analyzing the data from the case studies, pattern regularities between learning in algebra and the visual arts were extracted. Finally, the theoretical and pedagogical consequences of having made the common link between algebra and the visual arts were addressed. Theoretically, by considering the role of, for instance, aesthetics and identity as reasons to pursue algebra or the visual arts, Bandura\u27s (1986, 1997) social cognitive theory was corroborated and enlarged. Practically, recommendations were offered for the pedagogy of algebra and the visual arts

    Circuit Design

    Get PDF
    Circuit Design = Science + Art! Designers need a skilled "gut feeling" about circuits and related analytical techniques, plus creativity, to solve all problems and to adhere to the specifications, the written and the unwritten ones. You must anticipate a large number of influences, like temperature effects, supply voltages changes, offset voltages, layout parasitics, and numerous kinds of technology variations to end up with a circuit that works. This is challenging for analog, custom-digital, mixed-signal or RF circuits, and often researching new design methods in relevant journals, conference proceedings and design tools unfortunately gives the impression that just a "wild bunch" of "advanced techniques" exist. On the other hand, state-of-the-art tools nowadays indeed offer a good cockpit to steer the design flow, which include clever statistical methods and optimization techniques.Actually, this almost presents a second breakthrough, like the introduction of circuit simulators 40 years ago! Users can now conveniently analyse all the problems (discover, quantify, verify), and even exploit them, for example for optimization purposes. Most designers are caught up on everyday problems, so we fit that "wild bunch" into a systematic approach for variation-aware design, a designer's field guide and more. That is where this book can help! Circuit Design: Anticipate, Analyze, Exploit Variations starts with best-practise manual methods and links them tightly to up-to-date automation algorithms. We provide many tractable examples and explain key techniques you have to know. We then enable you to select and setup suitable methods for each design task - knowing their prerequisites, advantages and, as too often overlooked, their limitations as well. The good thing with computers is that you yourself can often verify amazing things with little effort, and you can use software not only to your direct advantage in solving a specific problem, but also for becoming a better skilled, more experienced engineer. Unfortunately, EDA design environments are not good at all to learn about advanced numerics. So with this book we also provide two apps for learning about statistic and optimization directly with circuit-related examples, and in real-time so without the long simulation times. This helps to develop a healthy statistical gut feeling for circuit design. The book is written for engineers, students in engineering and CAD / methodology experts. Readers should have some background in standard design techniques like entering a design in a schematic capture and simulating it, and also know about major technology aspects

    Pattern Recognition

    Get PDF
    A wealth of advanced pattern recognition algorithms are emerging from the interdiscipline between technologies of effective visual features and the human-brain cognition process. Effective visual features are made possible through the rapid developments in appropriate sensor equipments, novel filter designs, and viable information processing architectures. While the understanding of human-brain cognition process broadens the way in which the computer can perform pattern recognition tasks. The present book is intended to collect representative researches around the globe focusing on low-level vision, filter design, features and image descriptors, data mining and analysis, and biologically inspired algorithms. The 27 chapters coved in this book disclose recent advances and new ideas in promoting the techniques, technology and applications of pattern recognition

    Circuit Design

    Get PDF
    Circuit Design = Science + Art! Designers need a skilled "gut feeling" about circuits and related analytical techniques, plus creativity, to solve all problems and to adhere to the specifications, the written and the unwritten ones. You must anticipate a large number of influences, like temperature effects, supply voltages changes, offset voltages, layout parasitics, and numerous kinds of technology variations to end up with a circuit that works. This is challenging for analog, custom-digital, mixed-signal or RF circuits, and often researching new design methods in relevant journals, conference proceedings and design tools unfortunately gives the impression that just a "wild bunch" of "advanced techniques" exist. On the other hand, state-of-the-art tools nowadays indeed offer a good cockpit to steer the design flow, which include clever statistical methods and optimization techniques.Actually, this almost presents a second breakthrough, like the introduction of circuit simulators 40 years ago! Users can now conveniently analyse all the problems (discover, quantify, verify), and even exploit them, for example for optimization purposes. Most designers are caught up on everyday problems, so we fit that "wild bunch" into a systematic approach for variation-aware design, a designer's field guide and more. That is where this book can help! Circuit Design: Anticipate, Analyze, Exploit Variations starts with best-practise manual methods and links them tightly to up-to-date automation algorithms. We provide many tractable examples and explain key techniques you have to know. We then enable you to select and setup suitable methods for each design task - knowing their prerequisites, advantages and, as too often overlooked, their limitations as well. The good thing with computers is that you yourself can often verify amazing things with little effort, and you can use software not only to your direct advantage in solving a specific problem, but also for becoming a better skilled, more experienced engineer. Unfortunately, EDA design environments are not good at all to learn about advanced numerics. So with this book we also provide two apps for learning about statistic and optimization directly with circuit-related examples, and in real-time so without the long simulation times. This helps to develop a healthy statistical gut feeling for circuit design. The book is written for engineers, students in engineering and CAD / methodology experts. Readers should have some background in standard design techniques like entering a design in a schematic capture and simulating it, and also know about major technology aspects

    Reliability Abstracts and Technical Reviews 1966

    Get PDF
    No abstract availabl
    corecore