2,440 research outputs found

    Automated Probabilistic Reconstruction of White-Matter Pathways in Health and Disease Using an Atlas of the Underlying Anatomy

    Get PDF
    We have developed a method for automated probabilistic reconstruction of a set of major white-matter pathways from diffusion-weighted MR images. Our method is called TRACULA (TRActs Constrained by UnderLying Anatomy) and utilizes prior information on the anatomy of the pathways from a set of training subjects. By incorporating this prior knowledge in the reconstruction procedure, our method obviates the need for manual interaction with the tract solutions at a later stage and thus facilitates the application of tractography to large studies. In this paper we illustrate the application of the method on data from a schizophrenia study and investigate whether the inclusion of both patients and healthy subjects in the training set affects our ability to reconstruct the pathways reliably. We show that, since our method does not constrain the exact spatial location or shape of the pathways but only their trajectory relative to the surrounding anatomical structures, a set a of healthy training subjects can be used to reconstruct the pathways accurately in patients as well as in controls

    Using neurite orientation dispersion and density imaging and tracts constrained by underlying anatomy to differentiate between subjects along the Alzheimer's disease continuum

    Full text link
    OBJECTIVE: To assess the involvement of the white matter of the brain in the pathology of Alzheimer’s disease. Using Neurite Orientation Density and Dispersion Imaging (NODDI) and the probabilistic white matter parcellation tool Tracula as a means for understanding whether alterations in the white matter underlie changes in perceived cognitive abilities across the spectrum from health aging to Alzheimer’s disease. METHOD: Data were obtained from 28 participants in the Health Outreach Program for the Elderly (HOPE) at the Boston University Alzheimer’s Disease Center (BU ADC) Clinical Core Registry. MRI scans included an MPRAGE T1 scan, multi-b shell diffusion scan and a High Angular Resolution Diffusion Imaging scan (HARDI). Scans were processed with Freesurfer v6.0 and the NODDI Python2.7 toolkit. The resulting data included the orientation dispersion index (ODI) and Fractional Anisotropy (FA) values for cortical and subcortical regions in the DKT atlas space as well as specific Tracts Constrained by Underlying Anatomy (TRACULA) measurements for 18 specific established white matter tracts. Statistical models using measures of pathway integrity (FA and ODI data) were used to assess relationships with Informant Cognitive Change Index (ICCI), self-described Cognitive Change Index (CCI), and Clinical Dementia Rating (CDR) values. RESULTS: Measures of white matter integrity within several tracts predicted ICCI and CDR well in statistical models. FA and ODI values of the bilateral superior longitudinal fasciculi, inferior longitudinal fasciculi, and the cingulum bundle tracts were all related to ICCI and CDR. None of the known tracts’ FA or ODI values were related to CCI. CONCLUSIONS: Measures of white matter pathway integrity were predictive of ICCI and CDR scores but not CCI. These finding support the notion that self-report of cognitive abilities may be compromised by alterations in insight and reinforce the need for informed study partners and clinical ratings to evaluate potential MCI and AD

    A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale

    Get PDF
    In this era of complete genomes, our knowledge of neuroanatomical circuitry remains surprisingly sparse. Such knowledge is however critical both for basic and clinical research into brain function. Here we advocate for a concerted effort to fill this gap, through systematic, experimental mapping of neural circuits at a mesoscopic scale of resolution suitable for comprehensive, brain-wide coverage, using injections of tracers or viral vectors. We detail the scientific and medical rationale and briefly review existing knowledge and experimental techniques. We define a set of desiderata, including brain-wide coverage; validated and extensible experimental techniques suitable for standardization and automation; centralized, open access data repository; compatibility with existing resources, and tractability with current informatics technology. We discuss a hypothetical but tractable plan for mouse, additional efforts for the macaque, and technique development for human. We estimate that the mouse connectivity project could be completed within five years with a comparatively modest budget.Comment: 41 page

    Lead-DBS v3.0: Mapping Deep Brain Stimulation Effects to Local Anatomy and Global Networks.

    Get PDF
    Following its introduction in 2014 and with support of a broad international community, the open-source toolbox Lead-DBS has evolved into a comprehensive neuroimaging platform dedicated to localizing, reconstructing, and visualizing electrodes implanted in the human brain, in the context of deep brain stimulation (DBS) and epilepsy monitoring. Expanding clinical indications for DBS, increasing availability of related research tools, and a growing community of clinician-scientist researchers, however, have led to an ongoing need to maintain, update, and standardize the codebase of Lead-DBS. Major development efforts of the platform in recent years have now yielded an end-to-end solution for DBS-based neuroimaging analysis allowing comprehensive image preprocessing, lead localization, stimulation volume modeling, and statistical analysis within a single tool. The aim of the present manuscript is to introduce fundamental additions to the Lead-DBS pipeline including a deformation warpfield editor and novel algorithms for electrode localization. Furthermore, we introduce a total of three comprehensive tools to map DBS effects to local, tract- and brain network-levels. These updates are demonstrated using a single patient example (for subject-level analysis), as well as a retrospective cohort of 51 Parkinson's disease patients who underwent DBS of the subthalamic nucleus (for group-level analysis). Their applicability is further demonstrated by comparing the various methodological choices and the amount of explained variance in clinical outcomes across analysis streams. Finally, based on an increasing need to standardize folder and file naming specifications across research groups in neuroscience, we introduce the brain imaging data structure (BIDS) derivative standard for Lead-DBS. Thus, this multi-institutional collaborative effort represents an important stage in the evolution of a comprehensive, open-source pipeline for DBS imaging and connectomics

    Analyse et reconstruction de faisceaux de la matière blanche

    Get PDF
    L'imagerie par résonance magnétique de diffusion (IRMd) est une modalité d'acquisition permettant de sonder les tissus biologiques et d'en extraire une variété d'informations sur le mouvement microscopique des molécules d'eau. Plus spécifiquement à l'imagerie médicale, l'IRMd permet l'investigation des structures fibreuses de nombreux organes et facilite la compréhension des processus cognitifs ou au diagnostic. Dans le domaine des neurosciences, l'IRMd est cruciale à l'exploration de la connectivité structurelle de la matière blanche. Cette thèse s'intéresse plus particulièrement à la reconstruction de faisceaux de la matière blanche ainsi qu'à leur analyse. Toute la complexité du traitement des données commençant au scanneur jusqu'à la création d'un tractogramme est extrêmement importante. Par contre, l'application spécifique de reconstruction des faisceaux anatomiques plausibles est ultimement le véritable défi de l'IRMd. L'optimisation des paramètres de la tractographie, le processus de segmentation manuelle ou automatique ainsi que l'interprétation des résultats liée à ces faisceaux sont toutes des étapes du processus avec leurs lots de difficultés
    corecore