3,208 research outputs found

    Hierarchically Clustered Adaptive Quantization CMAC and Its Learning Convergence

    Get PDF
    No abstract availabl

    Cancer diagnosis using deep learning: A bibliographic review

    Get PDF
    In this paper, we first describe the basics of the field of cancer diagnosis, which includes steps of cancer diagnosis followed by the typical classification methods used by doctors, providing a historical idea of cancer classification techniques to the readers. These methods include Asymmetry, Border, Color and Diameter (ABCD) method, seven-point detection method, Menzies method, and pattern analysis. They are used regularly by doctors for cancer diagnosis, although they are not considered very efficient for obtaining better performance. Moreover, considering all types of audience, the basic evaluation criteria are also discussed. The criteria include the receiver operating characteristic curve (ROC curve), Area under the ROC curve (AUC), F1 score, accuracy, specificity, sensitivity, precision, dice-coefficient, average accuracy, and Jaccard index. Previously used methods are considered inefficient, asking for better and smarter methods for cancer diagnosis. Artificial intelligence and cancer diagnosis are gaining attention as a way to define better diagnostic tools. In particular, deep neural networks can be successfully used for intelligent image analysis. The basic framework of how this machine learning works on medical imaging is provided in this study, i.e., pre-processing, image segmentation and post-processing. The second part of this manuscript describes the different deep learning techniques, such as convolutional neural networks (CNNs), generative adversarial models (GANs), deep autoencoders (DANs), restricted Boltzmann’s machine (RBM), stacked autoencoders (SAE), convolutional autoencoders (CAE), recurrent neural networks (RNNs), long short-term memory (LTSM), multi-scale convolutional neural network (M-CNN), multi-instance learning convolutional neural network (MIL-CNN). For each technique, we provide Python codes, to allow interested readers to experiment with the cited algorithms on their own diagnostic problems. The third part of this manuscript compiles the successfully applied deep learning models for different types of cancers. Considering the length of the manuscript, we restrict ourselves to the discussion of breast cancer, lung cancer, brain cancer, and skin cancer. The purpose of this bibliographic review is to provide researchers opting to work in implementing deep learning and artificial neural networks for cancer diagnosis a knowledge from scratch of the state-of-the-art achievements

    Predicting complex system behavior using hybrid modeling and computational intelligence

    Get PDF
    “Modeling and prediction of complex systems is a challenging problem due to the sub-system interactions and dependencies. This research examines combining various computational intelligence algorithms and modeling techniques to provide insights into these complex processes and allow for better decision making. This hybrid methodology provided additional capabilities to analyze and predict the overall system behavior where a single model cannot be used to understand the complex problem. The systems analyzed here are flooding events and fetal health care. The impact of floods on road infrastructure is investigated using graph theory, agent-based traffic simulation, and Long Short-Term Memory deep learning to predict water level rise from river gauge height. Combined with existing infrastructure models, these techniques provide a 15-minute interval for making closure decisions rather than the current 6-hour interval. The second system explored is fetal monitoring, which is essential to diagnose severe fetal conditions such as acidosis. Support Vector Machine and Random Forest were compared to identify the best model for classification of fetal state. This model provided a more accurate classification than existing research on the CTG. A deep learning forecasting model was developed to predict the future values for fetal heart rate and uterine contractions. The forecasting and classification algorithms are then integrated to evaluate the future condition of the fetus. The final model can predict the fetal state 4 minutes ahead to help the obstetricians to plan necessary interventions for preventing acidosis and asphyxiation. In both cases, time series predictions using hybrid modeling provided superior results to existing methods to predict complex behaviors”--Abstract, page iv

    Review of automated time series forecasting pipelines

    Get PDF
    Time series forecasting is fundamental for various use cases in different domains such as energy systems and economics. Creating a forecasting model for a specific use case requires an iterative and complex design process. The typical design process includes the five sections (1) data pre-processing, (2) feature engineering, (3) hyperparameter optimization, (4) forecasting method selection, and (5) forecast ensembling, which are commonly organized in a pipeline structure. One promising approach to handle the ever-growing demand for time series forecasts is automating this design process. The present paper, thus, analyzes the existing literature on automated time series forecasting pipelines to investigate how to automate the design process of forecasting models. Thereby, we consider both Automated Machine Learning (AutoML) and automated statistical forecasting methods in a single forecasting pipeline. For this purpose, we firstly present and compare the proposed automation methods for each pipeline section. Secondly, we analyze the automation methods regarding their interaction, combination, and coverage of the five pipeline sections. For both, we discuss the literature, identify problems, give recommendations, and suggest future research. This review reveals that the majority of papers only cover two or three of the five pipeline sections. We conclude that future research has to holistically consider the automation of the forecasting pipeline to enable the large-scale application of time series forecasting

    Forecasting bus passenger flows by using a clustering-based support vector regression approach

    Get PDF
    As a significant component of the intelligent transportation system, forecasting bus passenger flows plays a key role in resource allocation, network planning, and frequency setting. However, it remains challenging to recognize high fluctuations, nonlinearity, and periodicity of bus passenger flows due to varied destinations and departure times. For this reason, a novel forecasting model named as affinity propagation-based support vector regression (AP-SVR) is proposed based on clustering and nonlinear simulation. For the addressed approach, a clustering algorithm is first used to generate clustering-based intervals. A support vector regression (SVR) is then exploited to forecast the passenger flow for each cluster, with the use of particle swarm optimization (PSO) for obtaining the optimized parameters. Finally, the prediction results of the SVR are rearranged by chronological order rearrangement. The proposed model is tested using real bus passenger data from a bus line over four months. Experimental results demonstrate that the proposed model performs better than other peer models in terms of absolute percentage error and mean absolute percentage error. It is recommended that the deterministic clustering technique with stable cluster results (AP) can improve the forecasting performance significantly.info:eu-repo/semantics/publishedVersio

    Segmentation of Brain MRI

    Get PDF
    • …
    corecore