11,744 research outputs found

    An investigation of machine learning based prediction systems

    Get PDF
    Traditionally, researchers have used either o�f-the-shelf models such as COCOMO, or developed local models using statistical techniques such as stepwise regression, to obtain software eff�ort estimates. More recently, attention has turned to a variety of machine learning methods such as artifcial neural networks (ANNs), case-based reasoning (CBR) and rule induction (RI). This paper outlines some comparative research into the use of these three machine learning methods to build software e�ort prediction systems. We briefly describe each method and then apply the techniques to a dataset of 81 software projects derived from a Canadian software house in the late 1980s. We compare the prediction systems in terms of three factors: accuracy, explanatory value and configurability. We show that ANN methods have superior accuracy and that RI methods are least accurate. However, this view is somewhat counteracted by problems with explanatory value and configurability. For example, we found that considerable eff�ort was required to configure the ANN and that this compared very unfavourably with the other techniques, particularly CBR and least squares regression (LSR). We suggest that further work be carried out, both to further explore interaction between the enduser and the prediction system, and also to facilitate configuration, particularly of ANNs

    A Survey on Compiler Autotuning using Machine Learning

    Full text link
    Since the mid-1990s, researchers have been trying to use machine-learning based approaches to solve a number of different compiler optimization problems. These techniques primarily enhance the quality of the obtained results and, more importantly, make it feasible to tackle two main compiler optimization problems: optimization selection (choosing which optimizations to apply) and phase-ordering (choosing the order of applying optimizations). The compiler optimization space continues to grow due to the advancement of applications, increasing number of compiler optimizations, and new target architectures. Generic optimization passes in compilers cannot fully leverage newly introduced optimizations and, therefore, cannot keep up with the pace of increasing options. This survey summarizes and classifies the recent advances in using machine learning for the compiler optimization field, particularly on the two major problems of (1) selecting the best optimizations and (2) the phase-ordering of optimizations. The survey highlights the approaches taken so far, the obtained results, the fine-grain classification among different approaches and finally, the influential papers of the field.Comment: version 5.0 (updated on September 2018)- Preprint Version For our Accepted Journal @ ACM CSUR 2018 (42 pages) - This survey will be updated quarterly here (Send me your new published papers to be added in the subsequent version) History: Received November 2016; Revised August 2017; Revised February 2018; Accepted March 2018
    • …
    corecore