255 research outputs found

    Evaluating the impact of physical activity apps and wearables: interdisciplinary review

    Get PDF
    Background: Although many smartphone apps and wearables have been designed to improve physical activity, their rapidly evolving nature and complexity present challenges for evaluating their impact. Traditional methodologies, such as randomized controlled trials (RCTs), can be slow. To keep pace with rapid technological development, evaluations of mobile health technologies must be efficient. Rapid alternative research designs have been proposed, and efficient in-app data collection methods, including in-device sensors and device-generated logs, are available. Along with effectiveness, it is important to measure engagement (ie, usersโ€™ interaction and usage behavior) and acceptability (ie, usersโ€™ subjective perceptions and experiences) to help explain how and why apps and wearables work. Objectives: This study aimed to (1) explore the extent to which evaluations of physical activity apps and wearables: employ rapid research designs; assess engagement, acceptability, as well as effectiveness; use efficient data collection methods; and (2) describe which dimensions of engagement and acceptability are assessed. Method: An interdisciplinary scoping review using 8 databases from health and computing sciences. Included studies measured physical activity, and evaluated physical activity apps or wearables that provided sensor-based feedback. Results were analyzed using descriptive numerical summaries, chi-square testing, and qualitative thematic analysis. Results: A total of 1829 abstracts were screened, and 858 articles read in full. Of 111 included studies, 61 (55.0%) were published between 2015 and 2017. Most (55.0%, 61/111) were RCTs, and only 2 studies (1.8%) used rapid research designs: 1 single-case design and 1 multiphase optimization strategy. Other research designs included 23 (22.5%) repeated measures designs, 11 (9.9%) nonrandomized group designs, 10 (9.0%) case studies, and 4 (3.6%) observational studies. Less than one-third of the studies (32.0%, 35/111) investigated effectiveness, engagement, and acceptability together. To measure physical activity, most studies (90.1%, 101/111) employed sensors (either in-device [67.6%, 75/111] or external [23.4%, 26/111]). RCTs were more likely to employ external sensors (accelerometers: P=.005). Studies that assessed engagement (52.3%, 58/111) mostly used device-generated logs (91%, 53/58) to measure the frequency, depth, and length of engagement. Studies that assessed acceptability (57.7%, 64/111) most often used questionnaires (64%, 42/64) and/or qualitative methods (53%, 34/64) to explore appreciation, perceived effectiveness and usefulness, satisfaction, intention to continue use, and social acceptability. Some studies (14.4%, 16/111) assessed dimensions more closely related to usability (ie, burden of sensor wear and use, interface complexity, and perceived technical performance). Conclusions: The rapid increase of research into the impact of physical activity apps and wearables means that evaluation guidelines are urgently needed to promote efficiency through the use of rapid research designs, in-device sensors and user-logs to assess effectiveness, engagement, and acceptability. Screening articles was time-consuming because reporting across health and computing sciences lacked standardization. Reporting guidelines are therefore needed to facilitate the synthesis of evidence across disciplines

    CHORUS Deliverable 2.1: State of the Art on Multimedia Search Engines

    Get PDF
    Based on the information provided by European projects and national initiatives related to multimedia search as well as domains experts that participated in the CHORUS Think-thanks and workshops, this document reports on the state of the art related to multimedia content search from, a technical, and socio-economic perspective. The technical perspective includes an up to date view on content based indexing and retrieval technologies, multimedia search in the context of mobile devices and peer-to-peer networks, and an overview of current evaluation and benchmark inititiatives to measure the performance of multimedia search engines. From a socio-economic perspective we inventorize the impact and legal consequences of these technical advances and point out future directions of research

    Impact of video summary viewing on episodic memory recall:design guidelines for video summarizations

    Get PDF
    Reviewing lifelogging data has been proposed as a useful tool to support human memory. However, the sheer volume of data (particularly images) that can be captured by modern lifelogging systems makes the selection and presentation of material for review a challenging task. We present the results of a five-week user study involving 16 participants and over 69,000 images that explores both individual requirements for video summaries and the differences in cognitive load, user experience, memory experience, and recall experience between review using video summarisations and non-summary review techniques. Our results can be used to inform the design of future lifelogging data summarisation systems for memory augmentation

    Personalizable edge services for Web accessibility

    Get PDF
    Web Content Accessibility guidelines by W3C (W3C Recommendation, May 1999. http://www.w3.org/TR/WCAG10/) provide several suggestions for Web designers regarding how to author Web pages in order to make them accessible to everyone. In this context, this paper proposes the use of edge services as an ef๏ฌcient and general solution to promote accessibility and breaking down the digital barriers that inhibit users with disabilities to actively participate to any aspect of society. The idea behind edge services mainly affect the advantages of a personalized navigation in which contents are tailored according to different issues, such as clientโ€™s devices capabilities, communication systems and network conditions and, ๏ฌnally, preferences and/or abilities of the growing number of users that access the Web. To meet these requirements, Web designers have to ef๏ฌciently provide content adaptation and personalization functionalities mechanisms in order to guarantee universal access to the Internet content. The so far dominant paradigm of communication on theWWW, due to its simple request/responsemodel, cannot ef๏ฌciently address such requirements. Therefore, it must be augmented with new components that attempt to enhance the scalability, the performances and the ubiquity of the Web. Edge servers, acting on the HTTP data ๏ฌ‚ow exchanged between client and server, allow on-the-๏ฌ‚y content adaptation as well as other complex functionalities beyond the traditional caching and content replication services. These value-added services are called edge services and include personalization and customization, aggregation from multiple sources, geographical personalization of the navigation of pages (with insertion/emphasis of content that can be related to the userโ€™s geographical location), translation services, group navigation and awareness for social navigation, advanced services for bandwidth optimization such as adaptive compression and format transcoding, mobility, and ubiquitous access to Internet content. This paper presents Personalizable Accessible Navigation (PAN) that is a set of edge services designed to improveWeb pages accessibility, developed and deployed on top of a programmable intermediary framework. The characteristics and the location of the services, i.e., provided by intermediaries, as well as the personalization and the opportunities to select multiple pro๏ฌles make PAN a platform that is especially suitable for accessing the Web seamlessly also from mobile terminals

    Photo Wallet : interface design for simple mobile photo albums

    Get PDF
    Tese de mestrado. Multimรฉdia (Perfil Tecnologias). Universidade do Porto. Faculdade de Engenharia. 201

    Providing effective memory retrieval cues through automatic structuring and augmentation of a lifelog of images

    Get PDF
    Lifelogging is an area of research which is concerned with the capture of many aspects of an individual's life digitally, and within this rapidly emerging field is the significant challenge of managing images passively captured by an individual of their daily life. Possible applications vary from helping those with neurodegenerative conditions recall events from memory, to the maintenance and augmentation of extensive image collections of a tourist's trips. However, a large lifelog of images can quickly amass, with an average of 700,000 images captured each year, using a device such as the SenseCam. We address the problem of managing this vast collection of personal images by investigating automatic techniques that: 1. Identify distinct events within a full day of lifelog images (which typically consists of 2,000 images) e.g. breakfast, working on PC, meeting, etc. 2. Find similar events to a given event in a person's lifelog e.g. "show me other events where I was in the park" 3. Determine those events that are more important or unusual to the user and also select a relevant keyframe image for visual display of an event e.g. a "meeting" is more interesting to review than "working on PC" 4. Augment the images from a wearable camera with higher quality images from external "Web 2.0" sources e.g. find me pictures taken by others of the U2 concert in Croke Park In this dissertation we discuss novel techniques to realise each of these facets and how effective they are. The significance of this work is not only of benefit to the lifelogging community, but also to cognitive psychology researchers studying the potential benefits of lifelogging devices to those with neurodegenerative diseases

    ํ—ฌ์Šค์ผ€์–ด ์„œ๋น„์Šค์—์„œ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜์„ ์œ„ํ•œ ๋””์ž์ธ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์œตํ•ฉ๊ณผํ•™๊ธฐ์ˆ ๋Œ€ํ•™์› ์œตํ•ฉ๊ณผํ•™๋ถ€(๋””์ง€ํ„ธ์ •๋ณด์œตํ•ฉ์ „๊ณต),2020. 2. ์ด์ค‘์‹.์Šค๋งˆํŠธํฐ๊ณผ ์›จ์–ด๋Ÿฌ๋ธ” ๊ธฐ๊ธฐ์˜ ๋ณด๊ธ‰์œผ๋กœ ์ธํ•ด ํ™˜์ž ์ƒ์„ฑ ๊ฑด๊ฐ• ๋ฐ์ดํ„ฐ(Patient-Generated Health Data; PGHD)๊ฐ€ ํฌ๊ฒŒ ์ฆ๊ฐ€ํ•˜์˜€๊ณ , ์ด๋Š” ์˜์‚ฌ-ํ™˜์ž ์˜์‚ฌ ์†Œํ†ต์„ ๊ฐœ์„ ํ•˜์—ฌ ๋ฐ์ดํ„ฐ ์ค‘์‹ฌ์œผ๋กœ ๋ฐœ์ „ ํ•  ์ˆ˜์žˆ๋Š” ์ƒˆ๋กœ์šด ๊ธฐํšŒ๋ฅผ ์ œ๊ณตํ–ˆ๋‹ค. PGHD๋ฅผ ์‚ฌ์šฉํ•œ ๋ฐ์ดํ„ฐ ์ค‘์‹ฌ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜์„ ํ†ตํ•ด ํ™˜์ž์™€ ์˜์‚ฌ๋Š” ๊ธฐ์กด ์ž„์ƒ ๋ฐ์ดํ„ฐ๋ฅผ ๋ณด์™„ํ•˜์—ฌ ์ดํ•ด์˜ ์ฐจ์ด๋ฅผ ๋ฉ”์šธ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ํ™˜์ž ๊ฑด๊ฐ•์— ๋Œ€ํ•œ ํฌ๊ด„์ ์ธ ๊ด€์ ๋„ ํš๋“ํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ์ด๋Ÿฌํ•œ ์ƒˆ๋กœ์šด ์œ ํ˜•์˜ ๋ฐ์ดํ„ฐ์™€ ๊ธฐ์ˆ ์„ ๊ธฐ์กด ์˜๋ฃŒ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜์— ํ†ตํ•ฉํ•˜๋Š” ๋ฐ์—๋Š” ์—ฌ์ „ํžˆ ์–ด๋ ค์›€์ด ๋‚จ์•„ ์žˆ๋‹ค. ํ™˜์ž๋Š” ์ข…์ข… ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘์— ๋Œ€ํ•œ ์ฐธ์—ฌ์™€ ๋™๊ธฐ๋ฅผ ์žƒ์–ด๋ฒ„๋ฆฌ๋ฉฐ, ์ด์— ๋”ฐ๋ผ ์ˆ˜์ง‘ํ•œ ๋ฐ์ดํ„ฐ๋Š” ๋ถˆ์™„์ „ํ•ด์ง€๋Š” ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ•œ๋‹ค. ๋˜ํ•œ PGHD๊ฐ€ ์˜จ์ „ํ•˜๊ฒŒ ์ˆ˜์ง‘ ๋˜๋”๋ผ๋„ ์˜์‚ฌ์™€ ํ™˜์ž๋Š” ์˜๋ฃŒ ๊ด€ํ–‰์—์„œ ์ด๋Ÿฌํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜๋Š” ๋ฐ ์–ด๋ ค์›€์„ ๊ฒช๊ฒŒ ๋œ๋‹ค. ๋˜ํ•œ, ์‹œ๊ฐ„๊ณผ ์ •๋ณด์˜ ๋ถ€์กฑ์œผ๋กœ ์ธํ•ด ํ˜„์žฌ ์›Œํฌ ํ”Œ๋กœ์šฐ์—์„œ ํ™˜์ž์™€ ์˜์‚ฌ ๋ชจ๋‘๊ฐ€ PGHD๋ฅผ ํ†ตํ•ด ํ˜‘์—…ํ•˜๋Š” ๊ฒƒ์€ ๋งค์šฐ ์–ด๋ ค์šด ์ผ๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค. HCI ์—ฐ๊ตฌ ๊ด€์ ์—์„œ, PGHD๋ฅผ ํ™œ์šฉ ํ•œ ๋ฐ์ดํ„ฐ ์ค‘์‹ฌ ํ†ต์‹ ์„ ์ง€์›ํ•˜๋Š” ์‹œ์Šคํ…œ์„ ์„ค๊ณ„ํ•˜๋ฉด ์ด๋Ÿฌํ•œ ๊ณผ์ œ๋ฅผ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋Š” ์ž ์žฌ๋ ฅ์ด ์žˆ์œผ๋ฉฐ, ์ด๋Š” ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘(collection), ํ‘œํ˜„(representation), ํ•ด์„(interpretation) ๋ฐ ํ˜‘์—…(collaboration)์˜ ๋„ค ๊ฐ€์ง€ ์„ค๊ณ„ ๊ณต๊ฐ„(design space)์—์„œ ์ถ”๊ฐ€์ ์ธ ํƒ์ƒ‰์„ ์š”๊ตฌํ•œ๋‹ค. ๋”ฐ๋ผ์„œ, ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์‹œ์Šคํ…œ ์„ค๊ณ„ ๋ฐ ํ˜„์žฅ ๋ฐฐํฌ ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์—ฌ, ๊ฐ ์„ค๊ณ„ ๊ณต๊ฐ„์—์„œ ํ•ด๊ฒฐ๋˜์ง€ ์•Š์€ ์งˆ๋ฌธ์„ ํƒ์ƒ‰ํ•˜๊ณ  ๊ฒฝํ—˜์  ์—ฐ๊ตฌ ๊ฒฐ๊ณผ ๋ฐ ์„ค๊ณ„ ์ง€์นจ์„ ์ œ๊ณตํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•œ๋‹ค. ๋จผ์ €, ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘์— ๋Œ€ํ•œ ์„ค๊ณ„ ๊ณต๊ฐ„์˜ ์—ฐ๊ตฌ๋กœ์„œ, ์ ‘๊ทผ์„ฑ ๋†’์€ ๋ฐ์ดํ„ฐ ์ถ”์  ๋„๊ตฌ๊ฐ€ ํ™˜์ž๊ฐ€ ๋‹ค์–‘ํ•œ ์œ ํ˜•์˜ PGHD, ํŠนํžˆ ์‹์‚ฌ ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ํ•˜๋Š” ๋ฐ ์–ด๋–ค ๋„์›€์„ ์ค„ ์ˆ˜ ์žˆ๋Š”์ง€์— ๋Œ€ํ•ด ์—ฐ๊ตฌํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ์ด๋ฅผ ์œ„ํ•ด, ์ ‘๊ทผ์„ฑ ๋†’์€ ๋ฐ์ดํ„ฐ ์ถ”์  ๋„๊ตฌ์ธ mFood Logger์„ ๋””์ž์ธํ•œ ํ›„, 20 ๋ช…์˜ ํ™˜์ž์™€ 6 ๋ช…์˜ ์ž„์ƒ์˜๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์‹ค์ฆ์  ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ–ˆ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ํ™˜์ž์™€ ์ž„์ƒ์˜๊ฐ€ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜์„ ์œ„ํ•ด ์›ํ•˜๋Š” ๋ฐ์ดํ„ฐ ์œ ํ˜•์ด ๋ฌด์—‡์ธ์ง€ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ์—ˆ๊ณ , ์ž„์ƒ์  ๋งฅ๋ฝ์—์„œ ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ ํ•  ๋•Œ์˜ ๋‚œ์ ๊ณผ ๊ธฐํšŒ๋ฅผ ๋ฐœ๊ฒฌํ–ˆ๋‹ค. ๋‘˜์งธ, ์ž„์ƒ์˜๋ฅผ ์œ„ํ•œ ๋ฐ์ดํ„ฐ ํ‘œํ˜„์„ ํŒŒ์•…ํ•˜๊ธฐ ์œ„ํ•ด, 18๋ช…์˜ ๋‹ค์–‘ํ•œ ์ดํ•ด ๊ด€๊ณ„์ž(e.g., ์ž„์ƒ์˜, EMR ๊ฐœ๋ฐœ์ž)์™€ ์ฐธ์—ฌ์  ๋””์ž์ธ(participatory design) ํ”„๋กœ์„ธ์Šค๋ฅผ ํ†ตํ•ด PGHD๋ฅผ ํ‘œ์‹œํ•˜๋Š” DataMD๋ฅผ ์„ค๊ณ„ํ•˜๊ณ  ๊ตฌํ˜„ํ–ˆ๋‹ค. ์ฐธ์—ฌ์  ๋””์ž์ธ ์›Œํฌ์ƒต์„ ํ†ตํ•ด ์•Œ์•„๋‚ธ ๊ฒƒ์€, ์˜๋ฃŒ์  ์ƒํ™ฉ์˜ ์ œ์•ฝ ๋•Œ๋ฌธ์— ์ž„์ƒ์˜๊ฐ€ ์›ํ•˜๋Š” ๋ฐ์ดํ„ฐ ํ‘œํ˜„ ๋ฐฉ์‹์ด ํšจ์œจ์„ฑ๊ณผ ์นœ์ˆ™ํ•จ์œผ๋กœ ์ˆ˜๋ ด๋œ๋‹ค๋Š” ์ ์ด์—ˆ๋‹ค. ์ž„์ƒ์˜๋Š” ํ•™์Šต์— ๊ฑธ๋ฆฌ๋Š” ์‹œ๊ฐ„ ๋ฌธ์ œ๋กœ ์ธํ•ด ์ƒˆ๋กœ์šด ์‹œ๊ฐํ™” ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•˜์ง€ ์•Š์•˜๊ณ , ํ•œ ๋ฒˆ์— ๋งŽ์€ ์–‘์˜ ๋ฐ์ดํ„ฐ๋ฅผ ๋ณด๊ณ  ์‹ถ์–ดํ–ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์š”๊ตฌ ์‚ฌํ•ญ์„ ๊ณ ๋ คํ•˜์—ฌ, ๋‹ค์–‘ํ•œ ์œ ํ˜•์˜ PGHD๊ฐ€ ํ•œ ๋ˆˆ์— ๋ณด์—ฌ์ง€๋ฉฐ, ์—ฌ๋Ÿฌ ๊ฐ€์ง€ ์ž„์ƒ ์ƒํ™ฉ์„ ๊ณ ๋ คํ•œ, DataMD๋ฅผ ์„ค๊ณ„ํ•˜๊ณ  ๊ตฌํ˜„ํ–ˆ๋‹ค. ์…‹์งธ, ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜์˜ ์ค‘์š”ํ•œ ์ธก๋ฉด์œผ๋กœ์„œ, ํ™˜์ž๋ฅผ ์œ„ํ•œ ๋ฐ์ดํ„ฐ ํ•ด์„ ์ „๋žต์„ ์ œ์‹œํ•˜์—ฌ ํšจ๊ณผ์ ์ธ ๋ฐ์ดํ„ฐ ํ•ด์„์„ ๋•๋Š” ์„ค๊ณ„ ์ง€์นจ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. 20๋ช…์˜ ๋งŒ์„ฑ ์งˆํ™˜ ํ™˜์ž์™€์˜ ์ธํ„ฐ๋ทฐ๋ฅผ ํ†ตํ•ด, ํ™˜์ž๋“ค์ด PGHD๋ฅผ ํ•ด์„ํ•  ๋•Œ, ๋…ผ๋ฆฌ์  ์ฆ๊ฑฐ๊ฐ€ ์•„๋‹Œ ์ž์‹ ์˜ ๊ณผ๊ฑฐ ๊ฒฝํ—˜์— ๊ฐ•ํ•˜๊ฒŒ ์˜์กดํ•œ๋‹ค๋Š” ์ ์„ ๋ฐํ˜€๋ƒˆ๋‹ค. ํ™˜์ž๋“ค์€ ์ž์‹ ์˜ ์‹ ๋…๊ณผ ๊ฒฝํ—˜์— ๋”ฐ๋ผ ์—ฌ๋Ÿฌ ๋ฐ์ดํ„ฐ ์‚ฌ์ด์˜ ๊ด€๊ณ„๋ฅผ ๊ฐ€์ •ํ•˜๋ฉฐ, ์ด๋ฅผ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด ๋„ค ๊ฐ€์ง€์˜ ๋ฐ์ดํ„ฐ ํ•ด์„ ์ „๋žต์„ ๊ตฌ์‚ฌํ–ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ดํ•ด๋Š” ์„ค๊ณ„์ž์™€ ์—ฐ๊ตฌ์›์ด ๋ฐ์ดํ„ฐ ํ•ด์„์„ ์ง€์›ํ•˜๋Š” ์‹œ์Šคํ…œ ์„ค๊ณ„๋ฅผ ๋ฐœ์ „์‹œํ‚ค๋Š” ๋ฐ ๋„์›€์ด ๋  ์ˆ˜ ์žˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ๋ฐ์ดํ„ฐ๋ฅผ ํ†ตํ•œ ํ˜‘์—…์„ ์ง€์›ํ•˜๊ธฐ ์œ„ํ•ด ์•ž์„  ์—ฐ๊ตฌ์—์„œ ๋””์ž์ธํ•œ ์‹œ์Šคํ…œ์„ ๊ธฐ๋ฐ˜์œผ๋กœ PGHD๋ฅผ ๊ณต์œ ํ•˜๊ณ  ํ™œ์šฉํ•จ์œผ๋กœ์จ, ์ž„์ƒ์˜์™€ ํ™˜์ž๊ฐ€ ์–ด๋–ป๊ฒŒ ํ˜‘์—…ํ•˜๋Š”์ง€๋ฅผ ์กฐ์‚ฌํ•˜๊ณ ์ž ํ–ˆ๋‹ค. ํ™˜์ž์˜ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ๋ฐ ํ•ด์„์„ ๋•๋Š” ์•ฑ์ธ MyHealthKeeper์™€ ์ž„์ƒ์˜๋ฅผ ์œ„ํ•œ ์ธํ„ฐํŽ˜์ด์Šค์ธ DataMD๋กœ ๊ตฌ์„ฑ๋œ ํ†ตํ•ฉ ์‹œ์Šคํ…œ์„ ์ž„์ƒ ํ˜„์žฅ์— ๋ฐฐํฌํ–ˆ๋‹ค. 80๋ช…์˜ ์™ธ๋ž˜ํ™˜์ž์™€์˜ ์ž„์ƒ์‹œํ—˜ ๊ฒฐ๊ณผ์— ๋”ฐ๋ฅด๋ฉด PGHD๋ฅผ ํ†ตํ•œ ํ˜‘๋ ฅ์œผ๋กœ ํ™˜์ž๊ฐ€ ํ–‰๋™ ๋ณ€ํ™”์— ์„ฑ๊ณตํ•  ์ˆ˜์žˆ์—ˆ๋‹ค. ๋˜ํ•œ, ์•ฑ ์‚ฌ์šฉ ๋กœ๊ทธ์— ๋”ฐ๋ฅด๋ฉด ํ™˜์ž๋Š” ์ง์ ‘์ ์ธ ์ƒํ˜ธ ์ž‘์šฉ ์—†์ด๋„ ์ž„์ƒ์˜์™€ ์›๊ฒฉ์œผ๋กœ ํ˜‘์—… ํ•  ์ˆ˜๋„ ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ, ์ด ์—ฐ๊ตฌ์—์„œ๋Š” ์ž„์ƒ์˜์™€ ํ™˜์ž ์‚ฌ์ด์˜ ํ˜‘๋ ฅ์„ ์ง€์›ํ•  ์ˆ˜์žˆ๋Š” ์ฃผ์š” ๊ธฐํšŒ๊ฐ€ ๊ธฐ์กด ์ž„์ƒ ์›Œํฌํ”Œ๋กœ์šฐ์— PGHD ์‚ฌ์šฉ์„ ํ†ตํ•ฉํ•˜๋Š” ๊ฒƒ์— ์žˆ์Œ์„ ์ œ์‹œํ•œ๋‹ค. ์•ž์„  ์—ฐ๊ตฌ๋“ค์„ ํ†ตํ•ด, ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜์„ ์œ„ํ•œ ๋””์ž์ธ์ด ํ™˜์ž์™€ ์˜์‚ฌ๊ฐ€ PGHD๋ฅผ ํ†ตํ•ด ํ˜‘์—…ํ•˜๋Š” ๋ฐ ๋„์›€์ด ๋  ์ˆ˜ ์žˆ์Œ์„ ๋ฐœ๊ฒฌํ–ˆ๋‹ค. PGHD๊ฐ€ ๋„ค ๊ฐœ์˜ ์„ค๊ณ„ ๊ณต๊ฐ„ ๋‚ด์—์„œ ๊ธฐ์กด ์˜์‚ฌ-ํ™˜์ž ํ†ต์‹ ์„ ๋ฐ์ดํ„ฐ ์ค‘์‹ฌ ํ†ต์‹ ์œผ๋กœ ๊ฐœ์„  ํ•  ์ˆ˜์žˆ๋Š” ๋ฐฉ๋ฒ•์„ ๊ฐœ๋…ํ™”ํ•จ์œผ๋กœ์จ, ์ด ์—ฐ๊ตฌ๋Š” ํ™˜์ž์™€ ์˜์‚ฌ ๊ฐ„์˜ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜์„ ์œ„ํ•œ ๋””์ž์ธ์ด ์–ด๋–ป๊ฒŒ ๋„์ถœ๋˜์–ด์•ผ ํ•˜๋Š”์ง€์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด ์‹œ๊ฐ์„ ์ œ๊ณตํ•  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€ํ•œ๋‹ค. ์ด ์ž‘์—…์€ HCI, CSCW๊ณผ ๊ฑด๊ฐ• ์ •๋ณดํ•™ ์ปค๋ฎค๋‹ˆํ‹ฐ์˜ ๊ฒฝํ—˜์  ์ดํ•ด๋ฅผ ๋†’์ด๊ณ , ์‹ค์šฉ์ ์ธ ์„ค๊ณ„ ์ง€์นจ์„ ์ œ๊ณตํ•˜๋ฉฐ, ์ด๋ก ์  ํ™•์žฅ์— ๊ธฐ์—ฌํ•œ๋‹ค. ๋˜ํ•œ, ์ด ์—ฐ๊ตฌ๋Š” ํ–ฅํ›„ ๋‹ค๋ฅธ ๋ถ„์•ผ์—์„œ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜์„ ์ง€์›ํ•˜๋Š” ์‹œ์Šคํ…œ์˜ ์„ค๊ณ„๊ฐ€ ์–ด๋–ป๊ฒŒ ์ด๋ค„์ ธ์•ผ ํ•˜๋Š”์ง€์— ๋Œ€ํ•œ ๊ธฐ์ดˆ๋ฅผ ์ œ๊ณตํ•œ๋‹ค.The prevalence of smartphones and wearable devices has led to a dramatic increase in patient-generated health data (PGHD). The growing interest in PGHD has offered new opportunities to improve doctor-patient communication to become more data-driven. Data-driven communication using PGHD enables patients and physicians to fill in gaps between understandings by supplementing existing clinical data, as well as providing a more comprehensive picture of ongoing patient health. However, challenges in integrating such new types of data and technologies into existing healthcare communications remain. Patients often lose their engagement and motivation in data collection, resulting in incomplete data. Even if PGHD is wholly collected, physicians and patients encounter challenges in utilizing such data--representation and interpretation--in healthcare practices. Furthermore, it is challenging for both patients and physicians to collaborate through PGHD in the current workflow due to the lack of time and information overload. From the HCI research perspective, designing a system supporting data-driven communication utilizing PGHD has the potential to address such challenges, which calls for further exploration in four design spaces: data collection, representation, interpretation, and collaboration. Therefore, in this dissertation work, I aim to explore unsolved questions in each design space by conducting a series of design and deployment studies and provide empirical findings and design guidelines. In the design space of data collection, I investigated how the semi-automated tracking tool can support patients to track various types of PGHD, especially food journaling. With the design of mFood Logger, a semi-automated data tracking tool, I conducted an empirical study with 20 patients and 6 clinicians. I identified desired data types for data-driven communication from the patients' and clinicians' sides and uncovered the challenges and opportunities in collecting data within clinical contexts. I was able to understand the feasibility and acceptability of PGHD in clinical practices, as well as clinicians' presence--either remotely or in-person--as an enabler that encourages patients to keep tracking PGHD in the longer-term. Incorporating critical topics regarding data collection from the literature and findings from my work, I discuss the applicability of PGHD and data tracking modes. To support data representation for clinicians, I designed and implemented DataMD that displays PGHD, considering situational constraints through a participatory design process with 18 various stakeholders (e.g., clinicians, EMR developers). Through the participatory design workshop, I found that the ways of data representation that clinicians desired converged to efficiency and familiarity due to the situational constraints. Clinicians wanted to see a large amount of data at once, avoiding using novel visualization methods due to the issue of learnability. Considering those requirements, I designed and implemented DataMD, in which various types of PGHD are represented with considerations of clinical contexts. I discussed the role of data representation in data-driven communication. As the critical aspect of data-driven communication, I present different data-interpretation strategies from patients, providing design guidelines to help effective data-interpretation. By conducting interviews with 20 chronic disease patients, I found that they shaped their interests and assumptions by incorporating prior experiences rather than logical evidence. I also identified four data-interpretation strategies: finding evidence to confirm assumptions, discrediting data to preserve initial assumptions, discovering new insights, and deferring drawing hasty conclusions from data. These understandings help designers and researchers advance the design of systems to support data-interpretation. Lastly, to support collaboration via data, I demonstrate how clinicians and patients collaborate by sharing and utilizing PGHD based on the system I designed. I deployed the integrated system consisting of a patient app, MyHealthKeeper, and a clinician interface, DataMD. I investigated how the system could support collaboration via data. Clinical outcomes revealed that collaboration via PGHD led patients to succeed in behavior change. App usage log also showed that patients could even remotely collaborate with clinicians without direct interactions. Findings from these studies indicate that the key opportunities to facilitate collaboration between clinicians and patients are the integration of data prescriptions into the clinician's workflow and intervention based on natural language feedback generated within clinical contexts. Across these studies, I found that the design for data-driven communication can support patients and physicians to collaborate through PGHD. By conceptualizing how PGHD could improve the existing doctor-patient communication to data-driven communication within four design spaces, I expect that this work will shed new light on how the design should be derived for data-driven communication between patients and physicians in the real world. Taken together, I believe this work contributes to empirical understandings, design guidelines, theoretical extensions, and artifacts in human-computer interaction, computer-supported cooperative work, and health informatics communities. This work also provides a foundation for future researchers to study how the design of the system supporting data-driven communication can empower various users situated in different contexts to communicate through data in other domains, such as learning, beyond the context of healthcare services.1 Introduction 1 1.1 Background 1 1.2 Motivation 4 1.3 Topics of Interest 5 1.3.1 Design Spaces 5 1.3.2 Research Scope 11 1.4 Thesis Statements and Research Questions 13 1.5 Thesis Overview 15 1.6 Contribution 18 1.6.1 Empirical research contributions 18 1.6.2 Artifacts contributions 18 1.6.3 Theoretical contributions 19 2 Conceptual Background & Related Work 20 2.1 Data-driven Communication in Healthcare Services 20 2.1.1 Concept of Doctor-Patient Communication 21 2.1.2 Brief History of Patient-Centered Approach 25 2.1.3 Emergence of Patient-Generated Health Data 27 2.2 Four Design Spaces for Data-Driven Communication 30 2.2.1 Data collection 34 2.2.2 Data Representation 41 2.2.3 Data Interpretation 47 2.2.4 Collaboration via Data 50 3 Data Collection: Study of mFood Logger 54 3.1 Motivation 55 3.2 Preliminary Work & Tool Design 57 3.2.1 Clinical Requirements for Data Collection 57 3.2.2 Design of Data Collection Tool: mFood Logger 60 3.3 Study Design 63 3.3.1 Participants 63 3.3.2 StudyProcedure 64 3.4 Results 69 3.4.1 PatientSide 69 3.4.2 ClinicianSide 76 3.5 Limitations & Conclusion 80 3.6 Chapter 3 Summary 81 4 Data Representation: Design of DataMD 83 4.1 Motivation 84 4.2 Preliminary Work 86 4.2.1 Workflow Journey Maps 87 4.2.2 DesignGoals 89 4.3 Study Design 90 4.3.1 Participants 91 4.3.2 ParticipatoryDesignworkshop 91 4.4 Results 92 4.4.1 DesignRequirements 92 4.4.2 Implementation: DataMD 98 4.5 Limitations & Conclusion 102 4.6 Summary of Chapter4 102 5 Data Interpretation: Data-Interpretation Strategies 103 5.1 Motivation 103 5.2 Study Design 106 5.2.1 Participants 106 5.2.2 Study Procedure 108 5.2.3 Data Analysis 110 5.3 Results 111 5.3.1 Change of Interest in Data 111 5.3.2 Assumptions on Relationships between Data Types 113 5.3.3 Data-InterpretationStrategy 117 5.4 Limitations & Conclusion 124 5.5 Summary of Chapter5 125 6 Collaboration via Data: Deployment Study 126 6.1 Motivation 127 6.2 System Design 128 6.2.1 MyHealthKeeper: Patient App 128 6.2.2 DataMD: Clinician Interface 132 6.3 Study Design 133 6.3.1 Participants 134 6.3.2 Procedure 135 6.4 Data Analysis 138 6.4.1 Statistical Analysis of Clinical Outcomes 139 6.4.2 App Usage Log 139 6.4.3 Observation Data Analysis 139 6.5 Results 140 6.5.1 Behavior Change 140 6.5.2 Data-Collection & Journaling Rate 144 6.5.3 Workflow Integration & Communication Support 146 6.6 Limitations & Conclusion 150 6.7 Summary of Chapter6 151 7 Discussion 152 7.1 Towards a Design for Data-Driven Communication 152 7.1.1 Improve Data Quality for Clinical Applicability 153 7.1.2 Support Accessibility of Data Collection 154 7.1.3 Understand Clinicians Preference for Familiar Data Representation. 157 7.1.4 Embrace Lived Experience for Rich Data Interpretation 158 7.1.5 Prioritize Workflow Integration for Successful Data-Driven Communication 163 7.1.6 Consider Risks of Using Patient-Generated Health Data in Clinical Settings 165 7.2 Opportunities for Future Work 166 7.2.1 Leverage Ubiquitous Technology to Design Data CollectionTools 166 7.2.2 Provide Data-Interpretation Guidelines for People with Different Levels of Literacy and Goals 169 7.2.3 Consider Cultural Differences in Data-Driven Communication 170 8 Conclusion 173 8.1 Summary of Contributions 173 8.2 Future Directions 175 8.3 Final Remarks 176Docto

    Digital life stories: Semi-automatic (auto)biographies within lifelog collections

    Get PDF
    Our life stories enable us to reflect upon and share our personal histories. Through emerging digital technologies the possibility of collecting life experiences digitally is increasingly feasible; consequently so is the potential to create a digital counterpart to our personal narratives. In this work, lifelogging tools are used to collect digital artifacts continuously and passively throughout our day. These include images, documents, emails and webpages accessed; texts messages and mobile activity. This range of data when brought together is known as a lifelog. Given the complexity, volume and multimodal nature of such collections, it is clear that there are significant challenges to be addressed in order to achieve coherent and meaningful digital narratives of our events from our life histories. This work investigates the construction of personal digital narratives from lifelog collections. It examines the underlying questions, issues and challenges relating to construction of personal digital narratives from lifelogs. Fundamentally, it addresses how to organize and transform data sampled from an individualโ€™s day-to-day activities into a coherent narrative account. This enquiry is enabled by three 20-month long-term lifelogs collected by participants and produces a narrative system which enables the semi-automatic construction of digital stories from lifelog content. Inspired by probative studies conducted into current practices of curation, from which a set of fundamental requirements are established, this solution employs a 2-dimensional spatial framework for storytelling. It delivers integrated support for the structuring of lifelog content and its distillation into storyform through information retrieval approaches. We describe and contribute flexible algorithmic approaches to achieve both. Finally, this research inquiry yields qualitative and quantitative insights into such digital narratives and their generation, composition and construction. The opportunities for such personal narrative accounts to enable recollection, reminiscence and reflection with the collection owners are established and its benefit in sharing past personal experience experiences is outlined. Finally, in a novel investigation with motivated third parties we demonstrate the opportunities such narrative accounts may have beyond the scope of the collection owner in: personal, societal and cultural explorations, artistic endeavours and as a generational heirloom
    • โ€ฆ
    corecore