91 research outputs found

    Reasoning about norms under uncertainty in dynamic environments

    Get PDF
    The behaviour of norm-autonomous agents is determined by their goals and the norms that are explicitly represented inside their minds. Thus, they require mechanisms for acquiring and accepting norms, determining when norms are relevant to their case, and making decisions about norm compliance. Up un- til now the existing proposals on norm-autonomous agents assume that agents interact within a deterministic environment that is certainly perceived. In prac- tice, agents interact by means of sensors and actuators under uncertainty with non-deterministic and dynamic environments. Therefore, the existing propos- als are unsuitable or, even, useless to be applied when agents have a physical presence in some real-world environment. In response to this problem we have developed the n-BDI architecture. In this paper, we propose a multi -context graded BDI architecture (called n-BDI) that models norm-autonomous agents able to deal with uncertainty in dynamic environments. The n-BDI architecture has been experimentally evaluated and the results are shown in this paper.This paper was partially funded by the Spanish government under Grant CONSOLIDER-INGENIO 2010 CSD2007-00022 and the Valencian government under Project PROMETEOH/2013/019.Criado Pacheco, N.; Argente, E.; Noriega, P.; Botti Navarro, VJ. (2014). Reasoning about norms under uncertainty in dynamic environments. International Journal of Approximate Reasoning. 55(9):2049-2070. https://doi.org/10.1016/j.ijar.2014.02.004S2049207055

    Sistema multiagente para modelar procesos de consenso en toma de decisión en grupo a gran escala usando técnicas de soft computing

    Get PDF
    [ES]La presente Tesis se centra en el campo de los Procesos de Alcance de Consenso en Toma de Decisión en Grupo. En la literatura se han propuesto diversos modelos y enfoques para dar soporte a dichos procesos en problemas de toma de decisión en grupo reales, los cuales normalmente se han centrado en pequeños grupos de expertos. Sin embargo, dichos modelos presentan algunas dificultades:::;. y limitaciones para la gestión de grandes grupos. Dado que los problemas de toma de decisión en grupo a gran escala, en los que participa un elevado número de expertos, están cobrando una relevancia cada vez mayor en múltiples entornos tecnológicos, en esta investigación se propone un Sistema Multiagente basado en técnicas de soft computing, capaz de dar soporte en procesos de negociación semisupervisados, para alcanzar el consenso en problemas reales en los que participa un elevado número de expertos.[EN]This thesis focuses on the field of Consensus Reaching Processes within Group Decision Making. Several models and approaches have been proposed in the literature to support such processes in reallife group decision making problems, which have normally focused on small groups of experts. However, such models present some difficulties and limitations for the management of large groups. Due to the fact that large-scale group decision making problems, in which a large number of experts participate, are attaining an increasing relevance in multiple technological environments, this research proposes a multiagent system based on soft computing techniques, capable of giving support to semi-supervised negotiation processes in order to reach consensus in real-life problems in which a large number of experts take partoTesis Univ. Jaén. Departamento de Informática, leída el 25 de febrero de 201

    Reasoning about norms under uncertainty in dynamic environments

    Get PDF
    The behaviour of norm-autonomous agents is determined by their goals and the norms that are explicitly represented inside their minds. Thus, they require mechanisms for acquiring and accepting norms, determining when norms are relevant to their case, and making decisions about norm compliance. Up until now the existing proposals on norm-autonomous agents assume that agents interact within a deterministic environment that is certainly perceived. In practise, agents interact by means of sensors and actuators under uncertainty with non-deterministic and dynamic environments. Therefore, the existing proposals are unsuitable or, even, useless to be applied when agents have a physical presence in some real-world environment. In response to this problem we have developed the n-BDI architecture. In this paper, we propose a multi-context graded BDI architecture (called n-BDI) that models norm-autonomous agents able to deal with uncertainty in dynamic environments. The n-BDI architecture has been experimentally evaluated and the results are shown in this paper. © 2014 Elsevier Inc. All rights reserved

    Social Welfare

    Get PDF
    "Social Welfare" offers, for the first time, a wide-ranging, internationally-focused selection of cutting-edge work from leading academics. Its interdisciplinary approach and comparative perspective promote examination of the most pressing social welfare issues of the day. The book aims to clarify some of the ambiguity around the term, discuss the pros and cons of privatization, present a range of social welfare paradoxes and innovations, and establish a clear set of economic frameworks with which to understand the conditions under which the change in social welfare can be obtained

    Proceedings of the 1st Doctoral Consortium at the European Conference on Artificial Intelligence (DC-ECAI 2020)

    Get PDF
    1st Doctoral Consortium at the European Conference on Artificial Intelligence (DC-ECAI 2020), 29-30 August, 2020 Santiago de Compostela, SpainThe DC-ECAI 2020 provides a unique opportunity for PhD students, who are close to finishing their doctorate research, to interact with experienced researchers in the field. Senior members of the community are assigned as mentors for each group of students based on the student’s research or similarity of research interests. The DC-ECAI 2020, which is held virtually this year, allows students from all over the world to present their research and discuss their ongoing research and career plans with their mentor, to do networking with other participants, and to receive training and mentoring about career planning and career option

    A Temporal Framework for Hypergame Analysis of Cyber Physical Systems in Contested Environments

    Get PDF
    Game theory is used to model conflicts between one or more players over resources. It offers players a way to reason, allowing rationale for selecting strategies that avoid the worst outcome. Game theory lacks the ability to incorporate advantages one player may have over another player. A meta-game, known as a hypergame, occurs when one player does not know or fully understand all the strategies of a game. Hypergame theory builds upon the utility of game theory by allowing a player to outmaneuver an opponent, thus obtaining a more preferred outcome with higher utility. Recent work in hypergame theory has focused on normal form static games that lack the ability to encode several realistic strategies. One example of this is when a player’s available actions in the future is dependent on his selection in the past. This work presents a temporal framework for hypergame models. This framework is the first application of temporal logic to hypergames and provides a more flexible modeling for domain experts. With this new framework for hypergames, the concepts of trust, distrust, mistrust, and deception are formalized. While past literature references deception in hypergame research, this work is the first to formalize the definition for hypergames. As a demonstration of the new temporal framework for hypergames, it is applied to classical game theoretical examples, as well as a complex supervisory control and data acquisition (SCADA) network temporal hypergame. The SCADA network is an example includes actions that have a temporal dependency, where a choice in the first round affects what decisions can be made in the later round of the game. The demonstration results show that the framework is a realistic and flexible modeling method for a variety of applications
    • …
    corecore