2,774 research outputs found

    Development and prospect of unmanned aerial vehicle technologies for agricultural production management

    Get PDF
    Unmanned aerial vehicles have been developed and applied to support agricultural production management. Compared with piloted aircraft, an Unmanned Aerial Vehicle (UAV) can focus on small crop fields at lower flight altitudes than regular aircraft to perform site-specific farm management with higher precision. They can also “fill in the gap” in locations where fixed winged or rotary winged aircraft are not readily available. In agriculture, UAVs have primarily been developed and used for remote sensing and application of crop production and protection materials. Application of fertilizers and chemicals is frequently needed at specific times and locations for site-specific management. Routine monitoring of crop plant health is often required at very high resolution for accurate site-specific management as well. This paper presents an overview of research involving the development of UAV technology for agricultural production management. Technologies, systems and methods are examined and studied. The limitations of current UAVs for agricultural production management are discussed, as well as future needs and suggestions for development and application of the UAV technologies in agricultural production management

    Aerial Vehicle Tracking by Adaptive Fusion of Hyperspectral Likelihood Maps

    Full text link
    Hyperspectral cameras can provide unique spectral signatures for consistently distinguishing materials that can be used to solve surveillance tasks. In this paper, we propose a novel real-time hyperspectral likelihood maps-aided tracking method (HLT) inspired by an adaptive hyperspectral sensor. A moving object tracking system generally consists of registration, object detection, and tracking modules. We focus on the target detection part and remove the necessity to build any offline classifiers and tune a large amount of hyperparameters, instead learning a generative target model in an online manner for hyperspectral channels ranging from visible to infrared wavelengths. The key idea is that, our adaptive fusion method can combine likelihood maps from multiple bands of hyperspectral imagery into one single more distinctive representation increasing the margin between mean value of foreground and background pixels in the fused map. Experimental results show that the HLT not only outperforms all established fusion methods but is on par with the current state-of-the-art hyperspectral target tracking frameworks.Comment: Accepted at the International Conference on Computer Vision and Pattern Recognition Workshops, 201

    Evaluation of Unmanned Aerial Systems (UAS) Imagery for Forest Regeneration Surveys

    Get PDF
    Accurate and reliable methods of assessing forest regeneration are necessary to improve forest inventories and assist management decisions. This research evaluates the effectiveness of high spatial resolution imagery from unmanned aerial systems (UAS) to assess abundance and structure of forest regeneration. Data were collected for 696 young Norway spruce (Picea abies) trees to establish field-based census. UAS digital stereo imagery was collected at three altitudes, two flight speeds and four flight azimuths, for a total of 24 separate missions. Using two orthomosaic programs, orthoimages and Digital Elevation Models (DEM) were created. Number, location and size distribution of Norway spruce trees were derived from UAS products through manual and automated processes and compared to field measurements. Manual tree detection and position estimates produced best results with 93% accuracy, while automated tree detection was only 63% accurate. Significantly strong correlations (R2 \u3e 55%) between UAS crown estimates and field measurements were obtained

    Small unmanned airborne systems to support oil and gas pipeline monitoring and mapping

    Get PDF
    Acknowledgments We thank Johan Havelaar, Aeryon Labs Inc., AeronVironment Inc. and Aeronautics Inc. for kindly permitting the use of materials in Fig. 1.Peer reviewedPublisher PD

    Unmanned Aerial Vehicle (UAV) for monitoring soil erosion in Morocco

    Get PDF
    This article presents an environmental remote sensing application using a UAV that is specifically aimed at reducing the data gap between field scale and satellite scale in soil erosion monitoring in Morocco. A fixed-wing aircraft type Sirius I (MAVinci, Germany) equipped with a digital system camera (Panasonic) is employed. UAV surveys are conducted over different study sites with varying extents and flying heights in order to provide both very high resolution site-specific data and lower-resolution overviews, thus fully exploiting the large potential of the chosen UAV for multi-scale mapping purposes. Depending on the scale and area coverage, two different approaches for georeferencing are used, based on high-precision GCPs or the UAV’s log file with exterior orientation values respectively. The photogrammetric image processing enables the creation of Digital Terrain Models (DTMs) and ortho-image mosaics with very high resolution on a sub-decimetre level. The created data products were used for quantifying gully and badland erosion in 2D and 3D as well as for the analysis of the surrounding areas and landscape development for larger extents
    • 

    corecore