899 research outputs found

    Automated Meter Reading and SCADA Application for Wireless Sensor Network

    Get PDF
    Currently, there are many technologies available to automate public utilities services (water, gas and electricity). AMR, Automated Meter Reading, and SCADA, Supervisory Control and Data Acquisition, are the main functions that these technologies must support. In this paper, we propose a low cost network with a similar architecture to a static ad-hoc sensor network based on low power and unlicensed radio. Topological parameters for this network are analyzed to obtain optimal performances and to derive a pseudo-range criterion to create an application-specific spanning tree for polling optimization purposes. In application layer services, we analytically study different polling schemes

    OLIMPO, An Ad-Hoc Wireless Sensor Network Simulator for Public Utilities Applications

    Get PDF
    This paper introduces OLIMPO, an useful simulation tool for researchers who are developing wireless sensor communication protocols. OLIMPO is a discreteevent simulator design to be easily recon gured by the user, providing a way to design, develop and test communication protocols. In particular, we have designed a self-organizing wireless sensor network for low data rate. Our premise is that, due to their inherent spread location over large areas, wireless sensor networks are well-suited for SCADA applications, which require relatively simple control and monitoring. To show the facilities of our simulator, we have studied our network protocol with OLIMPO, developing several simulations. The purpose of these simulations is to demonstrate, quantitatively, the capability of our network to support this kind of applications

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Giving neurons to sensors. QoS management in wireless sensors networks

    Get PDF
    Public utilities services (gas, water and electricity) have been traditionally automated with several technologies. The main functions that these technologies must support are AMR, Automated Meter Reading, and SCADA, Supervisory Control And Data Acquisition. Most meter manufacturers provide devices with Bluetoothr or ZigBeeTM communication features. This characteristic has allowed the inclusion of wireless sensor networks (WSN) in these systems. Once WSNs have appeared in such a scenario, real-time AMR and SCADA applications can be developed with low cost. Data must be routed from every meter to a base station. This paper describes the use of a novel QoS-driven routing algorithm, named SIR: Sensor Intelligence Routing, over a network of meters. An arti cial neural network is introduced in every node to manage the routes that data have to follow. The resulting system is named Intelligent Wireless Sensor Network (IWSN)

    Performance Analysis of Discrete Wavelet Multitone Transceiver for Narrowband PLC in Smart Grid

    Get PDF
    Smart Grid is an abstract idea, which involves the utilization of powerlines for sensing, measurement, control and communication for efficient utilization and distribution of energy, as well as automation of meter reading, load management and capillary control of Green Energy resources connected to the grid. Powerline Communication (PLC) has assumed a new role in the Smart Grid scenario, adopting the narrowband PLC (NB-PLC) for a low cost and low data rate communication for applications such as, automatic meter reading, dynamic management of load, etc. In this paper, we have proposed and simulated a discrete wavelet multitone (DWMT) transceiver in the presence of impulse noise for the NB-PLC channel applications in Smart Grid. The simulation results show that a DWMT transceiver outperforms a DFT-DMT with reference to the bit error rate (BER) performance

    A Survey on Communication Networks for Electric System Automation

    Get PDF
    Published in Computer Networks 50 (2006) 877–897, an Elsevier journal. The definitive version of this publication is available from Science Direct. Digital Object Identifier:10.1016/j.comnet.2006.01.005In today’s competitive electric utility marketplace, reliable and real-time information become the key factor for reliable delivery of power to the end-users, profitability of the electric utility and customer satisfaction. The operational and commercial demands of electric utilities require a high-performance data communication network that supports both existing functionalities and future operational requirements. In this respect, since such a communication network constitutes the core of the electric system automation applications, the design of a cost-effective and reliable network architecture is crucial. In this paper, the opportunities and challenges of a hybrid network architecture are discussed for electric system automation. More specifically, Internet based Virtual Private Networks, power line communications, satellite communications and wireless communications (wireless sensor networks, WiMAX and wireless mesh networks) are described in detail. The motivation of this paper is to provide a better understanding of the hybrid network architecture that can provide heterogeneous electric system automation application requirements. In this regard, our aim is to present a structured framework for electric utilities who plan to utilize new communication technologies for automation and hence, to make the decision making process more effective and direct.This work was supported by NEETRAC under Project #04-157

    Communication Technologies for Smart Grid: A Comprehensive Survey

    Full text link
    With the ongoing trends in the energy sector such as vehicular electrification and renewable energy, smart grid is clearly playing a more and more important role in the electric power system industry. One essential feature of the smart grid is the information flow over the high-speed, reliable and secure data communication network in order to manage the complex power systems effectively and intelligently. Smart grids utilize bidirectional communication to function where traditional power grids mainly only use one-way communication. The communication requirements and suitable technique differ depending on the specific environment and scenario. In this paper, we provide a comprehensive and up-to-date survey on the communication technologies used in the smart grid, including the communication requirements, physical layer technologies, network architectures, and research challenges. This survey aims to help the readers identify the potential research problems in the continued research on the topic of smart grid communications
    corecore