81 research outputs found

    Aspect-oriented refactoring of Java programs

    Get PDF

    Automated Aspect Recommendation through Clustering-Based Fan-in Analysis

    Full text link
    Identifying code implementing a crosscutting concern (CCC) automatically can benefit the maintainability and evolvability of the application. Although many approaches have been proposed to identify potential aspects, a lot of manual work is typically required before these candidates can be converted into refactorable aspects. In this paper, we propose a new aspect mining approach, called Clustering-Based Fan-in Analysis (CBFA), to rec-ommend aspect candidates in the form of method clusters, instead of single methods. CBFA uses a new lexical based clustering approach to identify method clusters and rank the clusters using a new ranking metric called cluster fan-in. Experiments on Linux and JHotDraw show that CBFA can provide accurate recommendations while improving aspect mining coverage significantly compared to other state-of-the-art mining approaches. 1

    On Language Processors and Software Maintenance

    Get PDF
    This work investigates declarative transformation tools in the context of software maintenance. Besides maintenance of the language specification, evolution of a software language requires the adaptation of the software written in that language as well as the adaptation of the software that transforms software written in the evolving language. This co-evolution is studied to derive automatic adaptations of artefacts from adaptations of the language specification. Furthermore, AOP for Prolog is introduced to improve maintainability of language specifications and derived tools.Die Arbeit unterstützt deklarative Transformationswerkzeuge im Kontext der Softwarewartung. Neben der Wartung der Sprachbeschreibung erfordert die Evolution einer Sprache sowohl die Anpassung der Software, die in dieser Sprache geschrieben ist als auch die Anpassung der Software, die diese Software transformiert. Diese Koevolution wird untersucht, um automatische Anpassungen von Artefakten von Anpassungen der Sprachbeschreibungen abzuleiten. Weiterhin wird AOP für Prolog eingeführt, um die Wartbarkeit von Sprachbeschreibungen und den daraus abgeleiteten Werkzeugen zu erhöhen

    A heuristic-based approach to code-smell detection

    Get PDF
    Encapsulation and data hiding are central tenets of the object oriented paradigm. Deciding what data and behaviour to form into a class and where to draw the line between its public and private details can make the difference between a class that is an understandable, flexible and reusable abstraction and one which is not. This decision is a difficult one and may easily result in poor encapsulation which can then have serious implications for a number of system qualities. It is often hard to identify such encapsulation problems within large software systems until they cause a maintenance problem (which is usually too late) and attempting to perform such analysis manually can also be tedious and error prone. Two of the common encapsulation problems that can arise as a consequence of this decomposition process are data classes and god classes. Typically, these two problems occur together – data classes are lacking in functionality that has typically been sucked into an over-complicated and domineering god class. This paper describes the architecture of a tool which automatically detects data and god classes that has been developed as a plug-in for the Eclipse IDE. The technique has been evaluated in a controlled study on two large open source systems which compare the tool results to similar work by Marinescu, who employs a metrics-based approach to detecting such features. The study provides some valuable insights into the strengths and weaknesses of the two approache

    Impact-Analyse für AspectJ - Eine kritische Analyse mit werkzeuggestütztem Ansatz

    Get PDF
    Aspect-Oriented Programming (AOP) has been promoted as a solution for modularization problems known as the tyranny of the dominant decomposition in literature. However, when analyzing AOP languages it can be doubted that uncontrolled AOP is indeed a silver bullet. The contributions of the work presented in this thesis are twofold. First, we critically analyze AOP language constructs and their effects on program semantics to sensitize programmers and researchers to resulting problems. We further demonstrate that AOP—as available in AspectJ and similar languages—can easily result in less understandable, less evolvable, and thus error prone code—quite opposite to its claims. Second, we examine how tools relying on both static and dynamic program analysis can help to detect problematical usage of aspect-oriented constructs. We propose to use change impact analysis techniques to both automatically determine the impact of aspects and to deal with AOP system evolution. We further introduce an analysis technique to detect potential semantical issues related to undefined advice precedence. The thesis concludes with an overview of available open source AspectJ systems and an assessment of aspect-oriented programming considering both fundamentals of software engineering and the contents of this thesis
    corecore