19 research outputs found

    Mycobacterium pseudoshottsii sp nov., a slowly growing chromogenic species isolated from Chesapeake Bay striped bass (Morone saxatilis)

    Get PDF
    A group of slowly growing photochromogenic mycobacteria was isolated from Chesapeake Bay striped bass (Morone saxatilis) during an epizootic of mycobacteriosis. Growth characteristics, acid-fastness and 16S rRNA gene sequencing results were consistent with those of the genus Mycobacterium, Biochemical reactions, growth characteristics and mycolic acid profiles (HPLC) resembled those of Mycobacterium shottsii, a non-pigmented mycobacterium also isolated during the same epizootic. Sequencing of the 16S rRNA genes, the gene encoding the exported repeated protein (erp) and the gene encoding the 65 kDa heat-shock protein (hsp65) and restriction enzyme analysis of the hsp65 gene demonstrated that this group of isolates is unique. Insertion sequences associated with Mycobacterium ulcerans, IS2404 and IS2606, were detected by PCR. These isolates could be differentiated from other slowly growing pigmented mycobacteria by their inability to grow at 37 degrees C, production of niacin and urease, absence of nitrate reductase, negative Tween 80 hydrolysis and resistance to isoniazid (1 mu g ml(-1)), p-nitrobenzoic acid, thiacetazone and thiophene-2-carboxylic hydrazide. On the basis of this polyphasic study, it is proposed that these isolates represent a novel species, Mycobacterium pseudoshottsii sp. nov. The type strain, L15(T), has been deposited in the American Type Culture Collection as ATCC BAA-883(T) and the National Collection of Type Cultures (UK) as NCTC 13318(T)

    Comparative linkage mapping of Oryza glumaepatulaand Oryza sativa interspecific crosses based on microsatellite and expressed sequence tag markers.

    Get PDF
    Molecular linkage maps representing the rice genome have been an important tool for breeding programs because they allow the elucidation of polygenic traits and are an efficient tool for monitoring wild introgressions in interspecific crosses. Common markers among rice genetic maps are important in defining the homology of chromosomes and the synteny between genomic target regions. We used 148 markers (expressed sequence tags, microsatellites and single nucleotide polymorphisms) to construct a molecular linkage map based on co-dominant markers for an interspecific backcross population using a wild rice ( Oryza glumaepatula) from Brazil and performed a comparative analysis with other interspecific maps. The comparative analysis revealed a Spearman correlation index of 0.86 for marker order conservation to a previous map constructed for an interspecific cross using the same wild parent. Approximately 90% of markers common to other interspecific maps kept the same order. These results indicate that it will be possible to generate a unique genetic map using the wild donor and that it may be a helpful tool for breeding programs because plants derived from different interspecific populations can be rapidly scanned using markers associated with useful wild traits

    Large-scale candidate gene study of leprosy susceptibility in the Karonga district of northern Malawi.

    Get PDF
    We present a large case-control candidate gene study of leprosy susceptibility. Thirty-eight polymorphic sites from 13 genes were investigated for their role in susceptibility to leprosy by comparing 270 cases with 452 controls in Karonga district, northern Malawi. Homozygotes for a silent T-->C change in codon 352 of the vitamin D receptor gene appeared to be at high risk (odds ratio [OR] = 4.3, 95% confidence interval [CI] = 1.6-11.4, P = 0.004), while homozygotes for the McCoy b blood group defining variant K1590E in exon 29 of the complement receptor 1 (formerly CD35) gene appeared to be protected (OR = 0.3, 95% CI = 0.1-0.8, P = 0.02). Borderline evidence for association with leprosy susceptibility was found for seven polymorphic sites in an additional six genes. Some of these apparent associations may be false-positive results from multiple comparisons, and several associations suggested by studies in other populations were not replicated here. These data provide evidence of inter-population heterogeneity in leprosy susceptibility

    Grapevine acidity: SVM tool development and NGS data analyses.

    Get PDF
    Single Nucleotide Polymorphisms (SNPs) represent the most abundant type of genetic variation and they are a valuable tool for several biological applications like linkage mapping, integration of genetic and physical maps, population genetics as well as evolutionary and protein structure-function studies. SNP genotyping by mapping DNA reads produced via Next generation sequencing (NGS) technologies on a reference genome is a very common and convenient approach in our days, but still prone to a significant error rate. The need of defining in silico true genetic variants in genomic and transcriptomic sequences is prompted by the high costs of the experimental validation through re-sequencing or SNP arrays, not only in terms of money but also time and sample availability. Several open-source tools have been recently developed to identify small variants in whole-genome data, but still the candidate variants, provided in the VCF output format, present a high false positive calling rate. Goal of this thesis work is the development of a bioinformatic method that classifies variant calling outputs in order to reduce the number of false positive calls. With the aim to dissect the molecular bases of grape acidity (Vitis vinifera L.), this tool has been then used to select SNPs in two grapevine varieties, which show very different content of organic acids in the berry. The VCF parameters have been used to train a Support Vector Machine (SVM) that classifies the VCF records in true and false positive variants, cleaning the output from the most likely false positive results. The SVM approach has been implemented in a new software, called VerySNP, and applied to model and non-model organisms. In both cases, the machine learning method efficiently recognized true positive from false positive variants in both genomic and transcriptomic sequences. In the second part of the thesis, VerySNP was applied to identify true SNPs in RNA-seq data of the grapevine variety Gora Chirine, characterized by low acidity, and Sultanine, a normal acidity variety closely related to Gora. The comparative transcriptomic analysis crossed with the SNP information lead to discover non-synonymous polymorphisms inside coding regions and, thus, provided a list of candidate genes potentially affecting acidity in grapevine

    Recurrent inversion polymorphisms in humans associate with genetic instability and genomic disorders.

    Get PDF
    Unlike copy number variants (CNVs), inversions remain an underexplored genetic variation class. By integrating multiple genomic technologies, we discover 729 inversions in 41 human genomes. Approximately 85% of inversionsretrotransposition; 80% of the larger inversions are balanced and affect twice as many nucleotides as CNVs. Balanced inversions show an excess of common variants, and 72% are flanked by segmental duplications (SDs) or retrotransposons. Since flanking repeats promote non-allelic homologous recombination, we developed complementary approaches to identify recurrent inversion formation. We describe 40 recurrent inversions encompassing 0.6% of the genome, showing inversion rates up to 2.7 × 1

    MutationDistiller – User-driven identification of disease mutations

    Get PDF
    In rare genetic diseases, a single genetic alteration can be enough to cause a severe disorder. Recent advances in genetic research have introduced exome or genome sequencing into clinical care. However, each sequencing run delivers a myriad of candidate variants that have to be sifted through in the hunt for the causative mutation - a major data challenge, for which researchers and clinicians have to rely on computer tools. With MutationDistiller, we have developed a freely available online tool to analyse whole exome sequencing data in a user-driven fashion. The tool aims at clinicians and researchers without bioinformatic experience who are working with real patient data, and allows them to distil the most likely causative variants from the sea of candidates. By uploading the patient’s genetic information and adding information on the symptoms, they can combine genotype and phenotype to find the culprit. MutationDistiller allows a wide range of phenotype data, such as HPO, OMIM and Orphanet entries, gene panels, expression data, Gene Ontology terms, and affected pathways. In the output, the program provides an ordered list of candidate alterations matching the user-defined criteria. In addition, crucial data on the alteration and the affected gene can be reviewed at a glance. This thesis describes the program, its background and usage, and compares it to current state-of-the-art tools. When assessing the tool, we found that it matches or out-competes similar software and is able to find the causative variant in a majority of cases. Moreover, its user-friendliness makes it a handy tool for clinicians and researchers, as is reflected by its usage: MutationDistiller routinely sees over 1,000 cases per month and has been used in over 14,000 cases at the time of writing. Thus, MutationDistiller has already found its way into the clinic. The tool, comprehensive documentation and example cases are freely available at https://www.mutationdistiller.org

    Recurrent inversion polymorphisms in humans associate with genetic instability and genomic disorders

    Get PDF
    Unlike copy number variants (CNVs), inversions remain an underexplored genetic variation class. By integrating multiple genomic technologies, we discover 729 inversions in 41 human genomes. Approximately 85% of inversions <2 kbp form by twin-priming during L1 retrotransposition; 80% of the larger inversions are balanced and affect twice as many nucleotides as CNVs. Balanced inversions show an excess of common variants, and 72% are flanked by segmental duplications (SDs) or retrotransposons. Since flanking repeats promote non-allelic homologous recombination, we developed complementary approaches to identify recurrent inversion formation. We describe 40 recurrent inversions encompassing 0.6% of the genome, showing inversion rates up to 2.7 × 10(-4) per locus per generation. Recurrent inversions exhibit a sex-chromosomal bias and co-localize with genomic disorder critical regions. We propose that inversion recurrence results in an elevated number of heterozygous carriers and structural SD diversity, which increases mutability in the population and predisposes specific haplotypes to disease-causing CNVs

    Insights on Reticulate Evolution in Ferns, with Special Emphasis on the Genus Ceratopteris

    Get PDF
    The history of life is often viewed as a evenly branching tree; however, in reality it is more like a tangled hedgerow. Many groups of organisms are known to have such a net-like or reticulate evolutionary history, but it is particularly common in ferns and lycophytes (also known as pteridophytes). This dissertation investigates how net-like evolution affects different groups of ferns, with a special emphasis on the model species C-fern (Ceratopteris richardii, also called the antler or water sprite fern). Genomic data are utilized to under-stand hybridization, cryptic species and reticulate evolution in two groups of ferns. The C-fern is shown to be a potential hybrid species, which has important implications for future research using this model organism
    corecore