4,861 research outputs found

    Automated Identification and Prioritization of Business Risks in e-service Networks

    Get PDF
    Modern e-service providers rely on service innovation to stay relevant. Once a new service package is designed, implementation-specific aspects such as value (co-)creation and cost/benefit analysis are investigated. However, due to time-to-market or competitive advantage constraints, innovative services are rarely assessed for potential risks of fraud before they are put out on the market. But these risks may result in loss of economic value for actors involved in the e-service’s provision.\ud Our e3fraude3fraud approach automatically generates and prioritizes undesired-able scenarios from a business value model of the e-service, thereby drastically reducing the time needed to conduct an assessment. We provide examples from telecom service provision to motivate and illustrate the utility of the tool

    Model-Based Security Testing

    Full text link
    Security testing aims at validating software system requirements related to security properties like confidentiality, integrity, authentication, authorization, availability, and non-repudiation. Although security testing techniques are available for many years, there has been little approaches that allow for specification of test cases at a higher level of abstraction, for enabling guidance on test identification and specification as well as for automated test generation. Model-based security testing (MBST) is a relatively new field and especially dedicated to the systematic and efficient specification and documentation of security test objectives, security test cases and test suites, as well as to their automated or semi-automated generation. In particular, the combination of security modelling and test generation approaches is still a challenge in research and of high interest for industrial applications. MBST includes e.g. security functional testing, model-based fuzzing, risk- and threat-oriented testing, and the usage of security test patterns. This paper provides a survey on MBST techniques and the related models as well as samples of new methods and tools that are under development in the European ITEA2-project DIAMONDS.Comment: In Proceedings MBT 2012, arXiv:1202.582

    Banking and Blockchain Adoption: Use Cases Analysis

    Get PDF

    Beyond the “Nature” of Data: Obstacles to Protecting Sensitive Information in the European Union and the United States

    Get PDF

    Advanced Cloud Privacy Threat Modeling

    Full text link
    Privacy-preservation for sensitive data has become a challenging issue in cloud computing. Threat modeling as a part of requirements engineering in secure software development provides a structured approach for identifying attacks and proposing countermeasures against the exploitation of vulnerabilities in a system . This paper describes an extension of Cloud Privacy Threat Modeling (CPTM) methodology for privacy threat modeling in relation to processing sensitive data in cloud computing environments. It describes the modeling methodology that involved applying Method Engineering to specify characteristics of a cloud privacy threat modeling methodology, different steps in the proposed methodology and corresponding products. We believe that the extended methodology facilitates the application of a privacy-preserving cloud software development approach from requirements engineering to design
    corecore