6,718 research outputs found

    CytoBinning: Immunological insights from multi-dimensional data

    Get PDF
    New cytometric techniques continue to push the boundaries of multi-parameter quantitative data acquisition at the single-cell level particularly in immunology and medicine. Sophisticated analysis methods for such ever higher dimensional datasets are rapidly emerging, with advanced data representations and dimensional reduction approaches. However, these are not yet standardized and clinical scientists and cell biologists are not yet experienced in their interpretation. More fundamentally their range of statistical validity is not yet fully established. We therefore propose a new method for the automated and unbiased analysis of high-dimensional single cell datasets that is simple and robust, with the goal of reducing this complex information into a familiar 2D scatter plot representation that is of immediate utility to a range of biomedical and clinical settings. Using publicly available flow cytometry and mass cytometry datasets we demonstrate that this method (termed CytoBinning), recapitulates the results of traditional manual cytometric analyses and leads to new and testable hypotheses

    A computational framework to emulate the human perspective in flow cytometric data analysis

    Get PDF
    Background: In recent years, intense research efforts have focused on developing methods for automated flow cytometric data analysis. However, while designing such applications, little or no attention has been paid to the human perspective that is absolutely central to the manual gating process of identifying and characterizing cell populations. In particular, the assumption of many common techniques that cell populations could be modeled reliably with pre-specified distributions may not hold true in real-life samples, which can have populations of arbitrary shapes and considerable inter-sample variation. <p/>Results: To address this, we developed a new framework flowScape for emulating certain key aspects of the human perspective in analyzing flow data, which we implemented in multiple steps. First, flowScape begins with creating a mathematically rigorous map of the high-dimensional flow data landscape based on dense and sparse regions defined by relative concentrations of events around modes. In the second step, these modal clusters are connected with a global hierarchical structure. This representation allows flowScape to perform ridgeline analysis for both traversing the landscape and isolating cell populations at different levels of resolution. Finally, we extended manual gating with a new capacity for constructing templates that can identify target populations in terms of their relative parameters, as opposed to the more commonly used absolute or physical parameters. This allows flowScape to apply such templates in batch mode for detecting the corresponding populations in a flexible, sample-specific manner. We also demonstrated different applications of our framework to flow data analysis and show its superiority over other analytical methods. <p/>Conclusions: The human perspective, built on top of intuition and experience, is a very important component of flow cytometric data analysis. By emulating some of its approaches and extending these with automation and rigor, flowScape provides a flexible and robust framework for computational cytomics

    Regulatory T cells in melanoma revisited by a computational clustering of FOXP3+ T cell subpopulations

    Get PDF
    CD4+ T cells that express the transcription factor FOXP3 (FOXP3+ T cells) are commonly regarded as immunosuppressive regulatory T cells (Treg). FOXP3+ T cells are reported to be increased in tumour-bearing patients or animals, and considered to suppress anti-tumour immunity, but the evidence is often contradictory. In addition, accumulating evidence indicates that FOXP3 is induced by antigenic stimulation, and that some non-Treg FOXP3+ T cells, especially memory-phenotype FOXP3low cells, produce proinflammatory cytokines. Accordingly, the subclassification of FOXP3+ T cells is fundamental for revealing the significance of FOXP3+ T cells in tumour immunity, but the arbitrariness and complexity of manual gating have complicated the issue. Here we report a computational method to automatically identify and classify FOXP3+ T cells into subsets using clustering algorithms. By analysing flow cytometric data of melanoma patients, the proposed method showed that the FOXP3+ subpopulation that had relatively high FOXP3, CD45RO, and CD25 expressions was increased in melanoma patients, whereas manual gating did not produce significant results on the FOXP3+ subpopulations. Interestingly, the computationally-identified FOXP3+ subpopulation included not only classical FOXP3high Treg but also memory-phenotype FOXP3low cells by manual gating. Furthermore, the proposed method successfully analysed an independent dataset, showing that the same FOXP3+ subpopulation was increased in melanoma patients, validating the method. Collectively, the proposed method successfully captured an important feature of melanoma without relying on the existing criteria of FOXP3+ T cells, revealing a hidden association between the T cell profile and melanoma, and providing new insights into FOXP3+ T cells and Treg

    Joint Modeling and Registration of Cell Populations in Cohorts of High-Dimensional Flow Cytometric Data

    Get PDF
    In systems biomedicine, an experimenter encounters different potential sources of variation in data such as individual samples, multiple experimental conditions, and multi-variable network-level responses. In multiparametric cytometry, which is often used for analyzing patient samples, such issues are critical. While computational methods can identify cell populations in individual samples, without the ability to automatically match them across samples, it is difficult to compare and characterize the populations in typical experiments, such as those responding to various stimulations or distinctive of particular patients or time-points, especially when there are many samples. Joint Clustering and Matching (JCM) is a multi-level framework for simultaneous modeling and registration of populations across a cohort. JCM models every population with a robust multivariate probability distribution. Simultaneously, JCM fits a random-effects model to construct an overall batch template -- used for registering populations across samples, and classifying new samples. By tackling systems-level variation, JCM supports practical biomedical applications involving large cohorts

    CytoBinning:Immunological insights from multi-dimensional data

    Get PDF
    <div><p>New cytometric techniques continue to push the boundaries of multi-parameter quantitative data acquisition at the single-cell level particularly in immunology and medicine. Sophisticated analysis methods for such ever higher dimensional datasets are rapidly emerging, with advanced data representations and dimensional reduction approaches. However, these are not yet standardized and clinical scientists and cell biologists are not yet experienced in their interpretation. More fundamentally their range of statistical validity is not yet fully established. We therefore propose a new method for the automated and unbiased analysis of high-dimensional single cell datasets that is simple and robust, with the goal of reducing this complex information into a familiar 2D scatter plot representation that is of immediate utility to a range of biomedical and clinical settings. Using publicly available flow cytometry and mass cytometry datasets we demonstrate that this method (termed CytoBinning), recapitulates the results of traditional manual cytometric analyses and leads to new and testable hypotheses.</p></div

    Automated analysis of 16-color polychromatic flow cytometry data maps immune cell populations and reveals a distinct inhibitory receptor signature in systemic sclerosis

    Full text link
    Background. The phenotypic profiles of both peripheral blood and tissue-resident immune cells have been linked to the health status of individuals with infectious and autoimmune diseases, as well as cancer. In light of the promising clinical trial results of agents that block the Inhibitory Receptor (IR) Programmed Death 1 (PD-1) axis, novel flow cytometric panels that simultaneously measure multiple IRs on several immune cell subsets could provide the distinct IR signatures to target in combinational therapies for many disease states. Also, due to the paucity of human samples, larger (14+ color) ‘1-tube’ panels for immune cell characterization ex vivo are of a high value in translational studies. Development of fluorescent-based panels offer several advantages as compared with analogous mass cytometric methods, including the ability to sort multiple populations of interest from the sample for further study. However, automated platforms of multi-dimensional single cell analysis that allow objective and comprehensive population characterization are severely underutilized on data generated from large polychromatic panels. Methods. A 16-color flow cytometry (FCM) panel was developed and optimized for the simultaneous characterization and purification of multiple human immune cell populations on a 4- laser BD FACSARIA II cell sorter. FCM data of samples obtained from healthy subjects and individuals with systemic sclerosis (SSc) were loaded into Cytobank cloud, then compensated and analyzed with SPADE clustering algorithm. The viSNE algorithm was also employed to compress the data into a 2D map of phenotypic space that was subsequently clustered using SPADE. For comparison, the FCM data were also analyzed manually using FlowJo software. Results. Our novel 16-color panel recognizes CD3, CD4, CD8, CD45RO, CD25, CD127, CD16, CD56, γδTCR, vα24, PD-1, LAG-3, CTLA-4, and TIM-3; it also contains a CD1d-tetramer and a live-dead dye (with CD19 and CD14 included as a combined dump channel). This panel allows combinational IR signatures to be determined from CD4+ T, CD8+ T, Natural Killer (NK), invariant Natural Killer (iNKT), and gamma delta (γδ) immune cell subsets within one sample. We have successfully identified all subsets of interest using automatic SPADE and viSNE algorithms integrated into Cytobank services, and demonstrated a distinctive phenotype of IR distribution on healthy versus systemic sclerosis subject groups. Conclusions. Methods of automatic analysis that were originally developed for processing multi-dimensional mass cytometry can be applied to polychromatic FCM datasets and provide robust results, including subset identification and distinct IR signatures in healthy compared to diseased subject groups

    Cluster analysis of flow cytometric list mode data on a personal computer

    Get PDF
    A cluster analysis algorithm, dedicated to analysis of flow cytometric data is described. The algorithm is written in Pascal and implemented on an MS-DOS personal computer. It uses k-means, initialized with a large number of seed points, followed by a modified nearest neighbor technique to reduce the large number of subclusters. Thus we combine the advantage of the k-means (speed) with that of the nearest neighbor technique (accuracy). In order to achieve a rapid analysis, no complex data transformations such as principal components analysis were used. \ud Results of the cluster analysis on both real and artificial flow cytometric data are presented and discussed. The results show that it is possible to get very good cluster analysis partitions, which compare favorably with manually gated analysis in both time and in reliability, using a personal computer
    • …
    corecore