1,090 research outputs found

    Finding usage patterns from generalized weblog data

    Get PDF
    Buried in the enormous, heterogeneous and distributed information, contained in the web server access logs, is knowledge with great potential value. As websites continue to grow in number and complexity, web usage mining systems face two significant challenges - scalability and accuracy. This thesis develops a web data generalization technique and incorporates it into the web usage mining framework in an attempt to exploit this information-rich source of data for effective and efficient pattern discovery. Given a concept hierarchy on the web pages, generalization replaces actual page-clicks with their general concepts. Existing methods do this by taking a level-based cut through the concept hierarchy. This adversely affects the quality of mined patterns since, depending on the depth of the chosen level, either significant pages of user interests get coalesced, or many insignificant concepts are retained. We present a usage driven concept ascension algorithm, which only preserves significant items, possibly at different levels in the hierarchy. Concept usage is estimated using a small stratified sample of the large weblog data. A usage threshold is then used to define the nodes to be pruned in the hierarchy for generalization. Our experiments on large real weblog data demonstrate improved performance in terms of quality and computation time of the pattern discovery process. Our algorithm yields an effective and scalable tool for web usage mining

    Technical report of data mining

    Get PDF
    No abstract availabl

    COOPERATIVE QUERY ANSWERING FOR APPROXIMATE ANSWERS WITH NEARNESS MEASURE IN HIERARCHICAL STRUCTURE INFORMATION SYSTEMS

    Get PDF
    Cooperative query answering for approximate answers has been utilized in various problem domains. Many challenges in manufacturing information retrieval, such as: classifying parts into families in group technology implementation, choosing the closest alternatives or substitutions for an out-of-stock part, or finding similar existing parts for rapid prototyping, could be alleviated using the concept of cooperative query answering. Most cooperative query answering techniques proposed by researchers so far concentrate on simple queries or single table information retrieval. Query relaxations in searching for approximate answers are mostly limited to attribute value substitutions. Many hierarchical structure information systems, such as manufacturing information systems, store their data in multiple tables that are connected to each other using hierarchical relationships - "aggregation", "generalization/specialization", "classification", and "category". Due to the nature of hierarchical structure information systems, information retrieval in such domains usually involves nested or jointed queries. In addition, searching for approximate answers in hierarchical structure databases not only considers attribute value substitutions, but also must take into account attribute or relation substitutions (i.e., WIDTH to DIAMETER, HOLE to GROOVE). For example, shape transformations of parts or features are possible and commonly practiced. A bar could be transformed to a rod. Such characteristics of hierarchical information systems, simple query or single-relation query relaxation techniques used in most cooperative query answering systems are not adequate. In this research, we proposed techniques for neighbor knowledge constructions, and complex query relaxations. We enhanced the original Pattern-based Knowledge Induction (PKI) and Distribution Sensitive Clustering (DISC) so that they can be used in neighbor hierarchy constructions at both tuple and attribute levels. We developed a cooperative query answering model to facilitate the approximate answer searching for complex queries. Our cooperative query answering model is comprised of algorithms for determining the causes of null answer, expanding qualified tuple set, expanding intersected tuple set, and relaxing multiple condition simultaneously. To calculate the semantic nearness between exact-match answers and approximate answers, we also proposed a nearness measuring function, called "Block Nearness", that is appropriate for the query relaxation methods proposed in this research

    Data mining in soft computing framework: a survey

    Get PDF
    The present article provides a survey of the available literature on data mining using soft computing. A categorization has been provided based on the different soft computing tools and their hybridizations used, the data mining function implemented, and the preference criterion selected by the model. The utility of the different soft computing methodologies is highlighted. Generally fuzzy sets are suitable for handling the issues related to understandability of patterns, incomplete/noisy data, mixed media information and human interaction, and can provide approximate solutions faster. Neural networks are nonparametric, robust, and exhibit good learning and generalization capabilities in data-rich environments. Genetic algorithms provide efficient search algorithms to select a model, from mixed media data, based on some preference criterion/objective function. Rough sets are suitable for handling different types of uncertainty in data. Some challenges to data mining and the application of soft computing methodologies are indicated. An extensive bibliography is also included

    Simplification logic for the management of unknown information

    Get PDF
    This paper aims to contribute to the extension of classical Formal Concept Analysis (FCA), allowing the management of unknown information. In a preliminary paper, we define a new kind of attribute implications to represent the knowledge from the information currently available. The whole FCA framework has to be appropriately extended to manage unknown information. This paper introduces a new logic for reasoning with this kind of implications, which belongs to the family of logics with an underlying Simplification paradigm. Specifically, we introduce a new algebra, named weak dual Heyting Algebra, that allows us to extend the Simplification logic for these new implications. To provide a solid framework, we also prove its soundness and completeness and show the advantages of the Simplification paradigm. Finally, to allow further use of this extension of FCA in applications, an algorithm for automated reasoning, which is directly built from logic, is defined.Funding for open access charge: Universidad de MĂĄlaga / CBUA This article is Supported by Grants TIN2017-89023-P, PRE2018-085199 and PID2021-127870OB-I00 of the Ministry of Science and Innovation of Spain and UMA2018-FEDERJA-001 of the Junta de Andalucia and European Social Fund

    CBR and MBR techniques: review for an application in the emergencies domain

    Get PDF
    The purpose of this document is to provide an in-depth analysis of current reasoning engine practice and the integration strategies of Case Based Reasoning and Model Based Reasoning that will be used in the design and development of the RIMSAT system. RIMSAT (Remote Intelligent Management Support and Training) is a European Commission funded project designed to: a.. Provide an innovative, 'intelligent', knowledge based solution aimed at improving the quality of critical decisions b.. Enhance the competencies and responsiveness of individuals and organisations involved in highly complex, safety critical incidents - irrespective of their location. In other words, RIMSAT aims to design and implement a decision support system that using Case Base Reasoning as well as Model Base Reasoning technology is applied in the management of emergency situations. This document is part of a deliverable for RIMSAT project, and although it has been done in close contact with the requirements of the project, it provides an overview wide enough for providing a state of the art in integration strategies between CBR and MBR technologies.Postprint (published version

    Attribute Oriented Induction High Level Emerging Pattern (AOI-HEP)

    Get PDF
    Attribute-Oriented Induction of High-level Emerging Pattern(AOI-HEP) is a combination of Attribute Oriented Induction (AOI) and Emerging Patterns (EP). AOI is a summarisation algorithm that compact a given dataset into small conceptual descriptions, where each attribute has a defined concept hierarchy. This presents patterns are easily readable and understandable.Emerging patterns are patterns discovered between two datasets and between two time periods such that patterns found in the first dataset have either grown (or reduced) in size, totally disappeared or new ones have emerged. AOI-HEP is not influenced by border-based algorithm like in EP mining algorithms. It is desirable therefore that we obtain summarised emerging patterns between two datasets. We propose High-level Emerging Pattern (HEP) algorithm. The main purpose of combining AOI and EP is to use the typical strength of AOI and EP to extract important high-level emerging patterns from data. The AOI characteristic rule algorithm was run twice with two input datasets,to create two rulesets which are then processed with the HEP algorithm. Firstly, the HEP algorithm starts with cartesian product between two rulesets which eliminates rules in rulesets by computing similarity metric (a categorization of attribute comparisons). Secondly, the output rules between two rulesets from the metric similarity are discriminated by computing a growth rate value to find ratio of supports between rules from two rulesets. The categorization of attribute comparisons is based on similarity hierarchy level. The categorisation of attributes was found to be with three options in how they subsume each other. These were Total Subsumption HEP (TSHEP), Subsumption Overlapping HEP (SOHEP) and Total Overlapping HEP (TOHEP) patterns. Meanwhile, from certain similarity hierarchy level and values, we can mine frequent and similar patterns that create discriminant rules. We used four large real datasets from UCI machine learning repository and discovered valuable HEP patterns including strong discriminant rules, frequent and similar patterns. Moreover, the experiments showed that most datasets have SOHEP but not TSHEP and TOHEP and the most rarely found were TOHEP. Since AOI- iii HEP can strongly discriminate high-level data, assuredly AOI-HEP can be implemented to discriminate datasets such as finding bad and good customers for banking loan systems or credit card applicants etc. Moreover, AOI-HEP can be implemented to mine similar patterns, for instance, mining similar customer loan patterns etc

    Abstract-Driven Pattern Discovery In Databases

    Get PDF
    In this paper, we study the problem of discovering interesting patterns in large volumes of data. Patterns can be expressed not only in terms of the database schema but also in user-defined terms, such as relational views and classification hierarchies. The user-defined terminology is stored in a data dictionary that maps it into the language of the database schema. We define a pattern as a deductive rule expressed in user-defined terms that has a degree of certainty associated with it. We present methods of discovering interesting patterns based on abstracts which are summaries of the data expressed in the language of the user.Information Systems Working Papers Serie

    Neural Mechanisms for Information Compression by Multiple Alignment, Unification and Search

    Get PDF
    This article describes how an abstract framework for perception and cognition may be realised in terms of neural mechanisms and neural processing. This framework — called information compression by multiple alignment, unification and search (ICMAUS) — has been developed in previous research as a generalized model of any system for processing information, either natural or artificial. It has a range of applications including the analysis and production of natural language, unsupervised inductive learning, recognition of objects and patterns, probabilistic reasoning, and others. The proposals in this article may be seen as an extension and development of Hebb’s (1949) concept of a ‘cell assembly’. The article describes how the concept of ‘pattern’ in the ICMAUS framework may be mapped onto a version of the cell assembly concept and the way in which neural mechanisms may achieve the effect of ‘multiple alignment’ in the ICMAUS framework. By contrast with the Hebbian concept of a cell assembly, it is proposed here that any one neuron can belong in one assembly and only one assembly. A key feature of present proposals, which is not part of the Hebbian concept, is that any cell assembly may contain ‘references’ or ‘codes’ that serve to identify one or more other cell assemblies. This mechanism allows information to be stored in a compressed form, it provides a robust mechanism by which assemblies may be connected to form hierarchies and other kinds of structure, it means that assemblies can express abstract concepts, and it provides solutions to some of the other problems associated with cell assemblies. Drawing on insights derived from the ICMAUS framework, the article also describes how learning may be achieved with neural mechanisms. This concept of learning is significantly different from the Hebbian concept and appears to provide a better account of what we know about human learning

    Second CLIPS Conference Proceedings, volume 1

    Get PDF
    Topics covered at the 2nd CLIPS Conference held at the Johnson Space Center, September 23-25, 1991 are given. Topics include rule groupings, fault detection using expert systems, decision making using expert systems, knowledge representation, computer aided design and debugging expert systems
    • 

    corecore