100 research outputs found

    Recommendations to improve imaging and analysis of brain lesion load and atrophy in longitudinal studies of multiple sclerosis

    Get PDF
    Focal lesions and brain atrophy are the most extensively studied aspects of multiple sclerosis (MS), but the image acquisition and analysis techniques used can be further improved, especially those for studying within-patient changes of lesion load and atrophy longitudinally. Improved accuracy and sensitivity will reduce the numbers of patients required to detect a given treatment effect in a trial, and ultimately, will allow reliable characterization of individual patients for personalized treatment. Based on open issues in the field of MS research, and the current state of the art in magnetic resonance image analysis methods for assessing brain lesion load and atrophy, this paper makes recommendations to improve these measures for longitudinal studies of MS. Briefly, they are (1) images should be acquired using 3D pulse sequences, with near-isotropic spatial resolution and multiple image contrasts to allow more comprehensive analyses of lesion load and atrophy, across timepoints. Image artifacts need special attention given their effects on image analysis results. (2) Automated image segmentation methods integrating the assessment of lesion load and atrophy are desirable. (3) A standard dataset with benchmark results should be set up to facilitate development, calibration, and objective evaluation of image analysis methods for MS

    Automated detection of brain abnormalities in neonatal hypoxia ischemic injury from MR images.

    Get PDF
    We compared the efficacy of three automated brain injury detection methods, namely symmetry-integrated region growing (SIRG), hierarchical region splitting (HRS) and modified watershed segmentation (MWS) in human and animal magnetic resonance imaging (MRI) datasets for the detection of hypoxic ischemic injuries (HIIs). Diffusion weighted imaging (DWI, 1.5T) data from neonatal arterial ischemic stroke (AIS) patients, as well as T2-weighted imaging (T2WI, 11.7T, 4.7T) at seven different time-points (1, 4, 7, 10, 17, 24 and 31 days post HII) in rat-pup model of hypoxic ischemic injury were used to assess the temporal efficacy of our computational approaches. Sensitivity, specificity, and similarity were used as performance metrics based on manual ('gold standard') injury detection to quantify comparisons. When compared to the manual gold standard, automated injury location results from SIRG performed the best in 62% of the data, while 29% for HRS and 9% for MWS. Injury severity detection revealed that SIRG performed the best in 67% cases while 33% for HRS. Prior information is required by HRS and MWS, but not by SIRG. However, SIRG is sensitive to parameter-tuning, while HRS and MWS are not. Among these methods, SIRG performs the best in detecting lesion volumes; HRS is the most robust, while MWS lags behind in both respects

    White-Matter Lesion Segmentation In Brain Mri Using Adaptive Trimmed Mean Approach

    Get PDF
    White Matter (WM) lesions are diffuse white matter abnormalities, that appear as hyperintense (bright) regions in cranial Magnetic Resonance Imaging (MRI). WM lesions are often observed in older population and are important indicators of stroke, multiple sclerosis, dementia and other brain-related disorders. Manual detection of WM lesions is laborious and the currently adopted visual scoring approaches for lesion grading is very subjective. In this thesis, a new approach for automated WM Lesions Segmentation is presented. In the proposed approach, the presence of WM lesions is detected as outliers in the intensity distribution of the Fluid Attenuated Inversion Recovery (FLAIR) MR images using an Adaptive Outlier Detection technique

    Visual and Contextual Modeling for the Detection of Repeated Mild Traumatic Brain Injury.

    Get PDF
    Currently, there is a lack of computational methods for the evaluation of mild traumatic brain injury (mTBI) from magnetic resonance imaging (MRI). Further, the development of automated analyses has been hindered by the subtle nature of mTBI abnormalities, which appear as low contrast MR regions. This paper proposes an approach that is able to detect mTBI lesions by combining both the high-level context and low-level visual information. The contextual model estimates the progression of the disease using subject information, such as the time since injury and the knowledge about the location of mTBI. The visual model utilizes texture features in MRI along with a probabilistic support vector machine to maximize the discrimination in unimodal MR images. These two models are fused to obtain a final estimate of the locations of the mTBI lesion. The models are tested using a novel rodent model of repeated mTBI dataset. The experimental results demonstrate that the fusion of both contextual and visual textural features outperforms other state-of-the-art approaches. Clinically, our approach has the potential to benefit both clinicians by speeding diagnosis and patients by improving clinical care

    Assessment and optimisation of MRI measures of atrophy as potential markers of disease progression in multiple sclerosis

    Get PDF
    There is a need for sensitive measures of disease progression in multiple sclerosis (MS) to monitor treatment effects and understand disease evolution. MRI measures of brain atrophy have been proposed for this purpose. This thesis investigates a number of measurement techniques to assess their relative ability to monitor disease progression in clinically isolated syndromes (CIS) and early relapsing remitting MS (RRMS). Presented, is work demonstrating that measurement techniques and MR acquisitions can be optimised to give small but significant improvements in measurement sensitivity and precision, which provided greater statistical power. Direct comparison of numerous techniques demonstrated significant differences between them. Atrophy measurements from SIENA and the BBSI (registration-based techniques) were significantly more precise than segmentation and subtraction of brain volumes, although larger percentage losses were observed in grey matter fraction. Ventricular enlargement (VE) gave similar statistical power and these techniques were robust and reliable; scan-rescan measurement error was <0.01% of brain volume for BBSI and SIENA and <0.04ml for VE. Annual atrophy rates (using SIENA) were -0.78% in RRMS and -0.52% in CIS patients who progressed to MS, which were significantly greater than the rate observed in controls (-0.07%). Sample size calculations for future trials of disease-modifying treatments in RRMS, using brain atrophy as an outcome measure, are described. For SIENA, the BBSI and VE respectively, an estimated 123, 157 and 140 patients per treatment arm respectively would be required to show a 30% slowing of atrophy rate over two years. In CIS subjects brain atrophy rate was a significant prognostic factor, independent of T2 MRI lesions at baseline, for development of MS by five year follow-up. It was also the most significant MR predictor of disability in RRMS subjects. Cognitive assessment of RRMS patients at five year follow-up is described, and brain atrophy rate was a significant predictor of overall cognitive performance, and more specifically, of performance in tests of memory. The work in this thesis has identified methods for sensitively measuring progressive brain atrophy in MS. It has shown that brain atrophy changes in early MS are related to early clinical evolution, providing complementary information to clinical assessment that could be utilised to monitor disease progression

    MRI white matter lesion segmentation using an ensemble of neural networks and overcomplete patch-based voting

    Full text link
    [EN] Accurate quantification of white matter hyperintensities (WMH) from Magnetic Resonance Imaging (MRI) is a valuable tool for the analysis of normal brain ageing or neurodegeneration. Reliable automatic extraction of WMH lesions is challenging due to their heterogeneous spatial occurrence, their small size and their diffuse nature. In this paper, we present an automatic method to segment these lesions based on an ensemble of overcomplete patch-based neural networks. The proposed method successfully provides accurate and regular segmentations due to its overcomplete nature while minimizing the segmentation error by using a boosted ensemble of neural networks. The proposed method compared favourably to state of the art techniques using two different neurodegenerative datasets. (C) 2018 Elsevier Ltd. All rights reserved.This research has been done thanks to the Australian distinguished visiting professor grant from the CSIRO (Commonwealth Scientific and Industrial Research Organisation) and the Spanish "Programa de apoyo a la investigacion y desarrollo (PAID-00-15)" of the Universidad Politecnica de Valencia. This research was partially supported by the Spanish grant TIN2013-43457-R from the Ministerio de Economia y competitividad. This study has been carried out also with support from the French State, managed by the French National Research Ageny in the frame of the Investments for the future Program IdEx Bordeaux (ANR-10-IDEX-03-02, HL-MRI Project), Cluster of excellence CPU and TRAIL (HR-DTI ANR-10-LABX-57) and the CNRS multidisciplinary project Defi imag'In. Some of the data used in this work was collected by the AIBL study group. Funding for the AIBL study is provided by the CSIRO Flagship Collaboration Fund and the Science and Industry Endowment Fund (SIEF) in partnership with Edith Cowan University (ECU), Mental Health Research Institute (MHRI), Alzheimer's Australia (AA), National Ageing Research Institute (NARI), Austin Health, Macquarie University, CogState Ltd, Hollywood Private Hospital, and Sir Charles Gairdner Hospital.ManjĂłn Herrera, JV.; Coupe, P.; Raniga, P.; Xia, Y.; Desmond, P.; Fripp, J.; Salvado, O. (2018). MRI white matter lesion segmentation using an ensemble of neural networks and overcomplete patch-based voting. Computerized Medical Imaging and Graphics. 69:43-51. https://doi.org/10.1016/j.compmedimag.2018.05.001S43516

    REGISTRATION AND SEGMENTATION OF BRAIN MR IMAGES FROM ELDERLY INDIVIDUALS

    Get PDF
    Quantitative analysis of the MRI structural and functional images is a fundamental component in the assessment of brain anatomical abnormalities, in mapping functional activation onto human anatomy, in longitudinal evaluation of disease progression, and in computer-assisted neurosurgery or surgical planning. Image registration and segmentation is central in analyzing structural and functional MR brain images. However, due to increased variability in brain morphology and age-related atrophy, traditional methods for image registration and segmentation are not suitable for analyzing MR brain images from elderly individuals. The overall goal of this dissertation is to develop algorithms to improve the registration and segmentation accuracy in the geriatric population. The specific aims of this work includes 1) to implement a fully deformable registration pipeline to allow a higher degree of spatial deformation and produce more accurate deformation field, 2) to propose and validate an optimum template selection method for atlas-based segmentation, 3) to propose and validate a multi-template strategy for image normalization, which characterizes brain structural variations in the elderly, 4) to develop an automated segmentation and localization method to access white matter integrity (WMH) in the elderly population, and finally 5) to study the default-mode network (DMN) connectivity and white matter hyperintensity in late-life depression (LLD) with the developed registration and segmentation methods. Through a series of experiments, we have shown that the deformable registration pipeline and the template selection strategies lead to improved accuracy in the brain MR image registration and segmentation, and the automated WMH segmentation and localization method provides more specific and more accurate information about volume and spatial distribution of WMH than traditional visual grading methods. Using the developed methods, our clinical study provides evidence for altered DMN connectivity in LLD. The correlation between WMH volume and DMN connectivity emphasizes the role of vascular changes in LLD's etiopathogenesis

    A Review of MRI Acute Ischemic Stroke Lesion Segmentation

    Get PDF
    Immediate treatment of a stroke can minimize long-term effects and even help reduce death risk. In the ischemic stroke cases, there are two zones of injury which are ischemic core and ischemic penumbra zone. The ischemic penumbra indicates the part that is located around the infarct core that is at risk of developing a brain infarction. Recently, various segmentation methods of infarct lesion from the MRI input images were developed and these methods gave a high accuracy in the extraction and detection of the infarct core. However, only some limited works have been reported to isolate the penumbra tissues and infarct core separately. The challenges exist in ischemic core identification are traditional approach prone to error, time-consuming and tedious for medical expert which could delay the treatment. In this paper, we study and analyse the segmentation algorithms for brain MRI ischemic of different categories. The focus of the review is mainly on the segmentation algorithms of infarct core with penumbra and infarct core only. We highlight the advantages and limitations alongside the discussion of the capabilities of these segmentation algorithms and its key challenges. The paper also devised a generic structure for automated stroke lesion segmentation. The performance of these algorithms was investigated by comparing different parameters of the surveyed algorithms. In addition, a new structure of the segmentation process for segmentation of penumbra is proposed by considering the challenges remains. The best accuracy for segmentation of infarct core and penumbra tissues is 82.1% whereas 99.1% for segmentation infarct core only. Meanwhile, the shortest average computational time recorded was 3.42 seconds for segmenting 10 slices of MR images. This paper presents an inclusive analysis of the discussed papers based on different categories of the segmentation algorithm. The proposed structure is important to enable a more robust and accurate assessment in clinical practice. This could be an opportunity for the medical and engineering sector to work together in designing a complete end-to-end automatic framework in detecting stroke lesion and penumbra
    • …
    corecore