4,070 research outputs found

    The Nature of Ephemeral Secrets in Reverse Engineering Tasks

    Get PDF
    Reverse engineering is typically carried out on static binary objects, such as files or compiled programs. Often the goal of reverse engineering is to extract a secret that is ephemeral and only exists while the system is running. Automation and dynamic analysis enable reverse engineers to extract ephemeral secrets from dynamic systems, obviating the need for analyzing static artifacts such as executable binaries. I support this thesis through four automated reverse engineering efforts: (1) named entity extraction to track Chinese Internet censorship based on keywords; (2) dynamic information flow tracking to locate secret keys in memory for a live program; (3) man-in-the-middle to emulate server behavior for extracting cryptographic secrets; and, (4) large-scale measurement and data mining of TCP/IP handshake behaviors to reveal machines on the Internet vulnerable to TCP/IP hijacking and other attacks. In each of these cases, automation enables the extraction of ephemeral secrets, often in situations where there is no accessible static binary object containing the secret. Furthermore, each project was contingent on building an automated system that interacted with the dynamic system in order to extract the secret(s). This general approach provides a new perspective, increasing the types of systems that can be reverse engineered and provides a promising direction for the future of reverse engineering

    Timing in Technischen Sicherheitsanforderungen für Systementwürfe mit heterogenen Kritikalitätsanforderungen

    Get PDF
    Traditionally, timing requirements as (technical) safety requirements have been avoided through clever functional designs. New vehicle automation concepts and other applications, however, make this harder or even impossible and challenge design automation for cyber-physical systems to provide a solution. This thesis takes upon this challenge by introducing cross-layer dependency analysis to relate timing dependencies in the bounded execution time (BET) model to the functional model of the artifact. In doing so, the analysis is able to reveal where timing dependencies may violate freedom from interference requirements on the functional layer and other intermediate model layers. For design automation this leaves the challenge how such dependencies are avoided or at least be bounded such that the design is feasible: The results are synthesis strategies for implementation requirements and a system-level placement strategy for run-time measures to avoid potentially catastrophic consequences of timing dependencies which are not eliminated from the design. Their applicability is shown in experiments and case studies. However, all the proposed run-time measures as well as very strict implementation requirements become ever more expensive in terms of design effort for contemporary embedded systems, due to the system's complexity. Hence, the second part of this thesis reflects on the design aspect rather than the analysis aspect of embedded systems and proposes a timing predictable design paradigm based on System-Level Logical Execution Time (SL-LET). Leveraging a timing-design model in SL-LET the proposed methods from the first part can now be applied to improve the quality of a design -- timing error handling can now be separated from the run-time methods and from the implementation requirements intended to guarantee them. The thesis therefore introduces timing diversity as a timing-predictable execution theme that handles timing errors without having to deal with them in the implemented application. An automotive 3D-perception case study demonstrates the applicability of timing diversity to ensure predictable end-to-end timing while masking certain types of timing errors.Traditionell wurden Timing-Anforderungen als (technische) Sicherheitsanforderungen durch geschickte funktionale Entwürfe vermieden. Neue Fahrzeugautomatisierungskonzepte und Anwendungen machen dies jedoch schwieriger oder gar unmöglich; Aufgrund der Problemkomplexität erfordert dies eine Entwurfsautomatisierung für cyber-physische Systeme heraus. Diese Arbeit nimmt sich dieser Herausforderung an, indem sie eine schichtenübergreifende Abhängigkeitsanalyse einführt, um zeitliche Abhängigkeiten im Modell der beschränkten Ausführungszeit (BET) mit dem funktionalen Modell des Artefakts in Beziehung zu setzen. Auf diese Weise ist die Analyse in der Lage, aufzuzeigen, wo Timing-Abhängigkeiten die Anforderungen an die Störungsfreiheit auf der funktionalen Schicht und anderen dazwischenliegenden Modellschichten verletzen können. Für die Entwurfsautomatisierung ergibt sich daraus die Herausforderung, wie solche Abhängigkeiten vermieden oder zumindest so eingegrenzt werden können, dass der Entwurf machbar ist: Das Ergebnis sind Synthesestrategien für Implementierungsanforderungen und eine Platzierungsstrategie auf Systemebene für Laufzeitmaßnahmen zur Vermeidung potentiell katastrophaler Folgen von Timing-Abhängigkeiten, die nicht aus dem Entwurf eliminiert werden. Ihre Anwendbarkeit wird in Experimenten und Fallstudien gezeigt. Allerdings werden alle vorgeschlagenen Laufzeitmaßnahmen sowie sehr strenge Implementierungsanforderungen für moderne eingebettete Systeme aufgrund der Komplexität des Systems immer teurer im Entwurfsaufwand. Daher befasst sich der zweite Teil dieser Arbeit eher mit dem Entwurfsaspekt als mit dem Analyseaspekt von eingebetteten Systemen und schlägt ein Entwurfsparadigma für vorhersagbares Timing vor, das auf der System-Level Logical Execution Time (SL-LET) basiert. Basierend auf einem Timing-Entwurfsmodell in SL-LET können die vorgeschlagenen Methoden aus dem ersten Teil nun angewandt werden, um die Qualität eines Entwurfs zu verbessern -- die Behandlung von Timing-Fehlern kann nun von den Laufzeitmethoden und von den Implementierungsanforderungen, die diese garantieren sollen, getrennt werden. In dieser Arbeit wird daher Timing Diversity als ein Thema der Timing-Vorhersage in der Ausführung eingeführt, das Timing-Fehler behandelt, ohne dass sie in der implementierten Anwendung behandelt werden müssen. Anhand einer Fallstudie aus dem Automobilbereich (3D-Umfeldwahrnehmung) wird die Anwendbarkeit von Timing-Diversität demonstriert, um ein vorhersagbares Ende-zu-Ende-Timing zu gewährleisten und gleichzeitig in der Lage zu sein, bestimmte Arten von Timing-Fehlern zu maskieren

    On the impossibility of effectively using likely-invariants for software attestation purposes

    Get PDF
    Invariants monitoring is a software attestation technique that aims at proving the integrity of a running application by checking likely-invariants, which are statistically significant predicates inferred on variables’ values. Being very promising, according to the software protection literature, we developed a technique to remotely monitor invariants. This paper presents the analysis we have performed to assess the effectiveness of our technique and the effectiveness of likely-invariants for software attestation purposes. Moreover, it illustrates the identified limitations and our studies to improve the detection abilities of this technique. Our results suggest that, despite further studies and future results may increase the efficacy and reduce the side effects, software attestation based on likely-invariants is not yet ready for the real world. Software developers should be warned of these limitations, if they could be tempted by adopting this technique, and companies developing software protections should not invest in development without also investing in further research

    An Overview on Application of Machine Learning Techniques in Optical Networks

    Get PDF
    Today's telecommunication networks have become sources of enormous amounts of widely heterogeneous data. This information can be retrieved from network traffic traces, network alarms, signal quality indicators, users' behavioral data, etc. Advanced mathematical tools are required to extract meaningful information from these data and take decisions pertaining to the proper functioning of the networks from the network-generated data. Among these mathematical tools, Machine Learning (ML) is regarded as one of the most promising methodological approaches to perform network-data analysis and enable automated network self-configuration and fault management. The adoption of ML techniques in the field of optical communication networks is motivated by the unprecedented growth of network complexity faced by optical networks in the last few years. Such complexity increase is due to the introduction of a huge number of adjustable and interdependent system parameters (e.g., routing configurations, modulation format, symbol rate, coding schemes, etc.) that are enabled by the usage of coherent transmission/reception technologies, advanced digital signal processing and compensation of nonlinear effects in optical fiber propagation. In this paper we provide an overview of the application of ML to optical communications and networking. We classify and survey relevant literature dealing with the topic, and we also provide an introductory tutorial on ML for researchers and practitioners interested in this field. Although a good number of research papers have recently appeared, the application of ML to optical networks is still in its infancy: to stimulate further work in this area, we conclude the paper proposing new possible research directions

    Microwave System for the Early Stage Detection of Congestive Heart Failure

    Get PDF
    Fluid accumulation inside the lungs, known as cardiac pulmonary edema, is one of the main early symptoms of congestive heart failure (CHF). That accumulation causes significant changes in the electrical properties of the lung tissues, which in turn can be detected using microwave techniques. To that end, the design and implementation of an automated ultrahigh-frequency microwave-based system for CHF detection and monitoring is presented. The hardware of the system consists of a wideband folded antenna attached to a fully automated vertical scanning platform, compact microwave transceiver, and laptop. The system includes software in the form of operational control, signal processing, and visualizing algorithms. To detect CHF, the system is designed to vertically scan the rear side of the human torso in a monostatic radar approach. The collected data from the scanning is then visualized in the time domain using the inverse Fourier transform. These images show the intensity of the reflected signals from different parts of the torso. Using a differential based detection technique, a threshold is defined to differentiate between healthy and unhealthy cases. This paper includes details of developing the automated platform, designing the antenna with the required properties imposed by the system, developing a signal processing algorithm, and introducing differential detection technique besides investigating miscellaneous probable CHF cases

    Methodology for malleable applications on distributed memory systems

    Get PDF
    A la portada logo BSC(English) The dominant programming approach for scientific and industrial computing on clusters is MPI+X. While there are a variety of approaches within the node, denoted by the ``X'', Message Passing interface (MPI) is the standard for programming multiple nodes with distributed memory. This thesis argues that the OmpSs-2 tasking model can be extended beyond the node to naturally support distributed memory, with three benefits: First, at small to medium scale the tasking model is a simpler and more productive alternative to MPI. It eliminates the need to distribute the data explicitly and convert all dependencies into explicit message passing. It also avoids the complexity of hybrid programming using MPI+X. Second, the ability to offload parts of the computation among the nodes enables the runtime to automatically balance the loads in a full-scale MPI+X program. This approach does not require a cost model, and it is able to transparently balance the computational loads across the whole program, on all its nodes. Third, because the runtime handles all low-level aspects of data distribution and communication, it can change the resource allocation dynamically, in a way that is transparent to the application. This thesis describes the design, development and evaluation of OmpSs-2@Cluster, a programming model and runtime system that extends the OmpSs-2 model to allow a virtually unmodified OmpSs-2 program to run across multiple distributed memory nodes. For well-balanced applications it provides similar performance to MPI+OpenMP on up to 16 nodes, and it improves performance by up to 2x for irregular and unbalanced applications like Cholesky factorization. This work also extended OmpSs-2@Cluster for interoperability with MPI and Barcelona Supercomputing Center (BSC)'s state-of-the-art Dynamic Load Balance (DLB) library in order to dynamically balance MPI+OmpSs-2 applications by transparently offloading tasks among nodes. This approach reduces the execution time of a microscale solid mechanics application by 46% on 64 nodes and on a synthetic benchmark, it is within 10% of perfect load balancing on up to 8 nodes. Finally, the runtime was extended to transparently support malleability for pure OmpSs-2@Cluster programs and interoperate with the Resources Management System (RMS). The only change to the application is to explicitly call an API function to control the addition or removal of nodes. In this regard we additionally provide the runtime with the ability to semi-transparently save and recover part of the application status to perform checkpoint and restart. Such a feature hides the complexity of data redistribution and parallel IO from the user while allowing the program to recover and continue previous executions. Our work is a starting point for future research on fault tolerance. In summary, OmpSs-2@Cluster expands the OmpSs-2 programming model to encompass distributed memory clusters. It allows an existing OmpSs-2 program, with few if any changes, to run across multiple nodes. OmpSs-2@Cluster supports transparent multi-node dynamic load balancing for MPI+OmpSs-2 programs, and enables semi-transparent malleability for OmpSs-2@Cluster programs. The runtime system has a high level of stability and performance, and it opens several avenues for future work.(Español) El modelo de programación dominante para clusters tanto en ciencia como industria es actualmente MPI+X. A pesar de que hay alguna variedad de alternativas para programar dentro de un nodo (indicado por la "X"), el estandar para programar múltiples nodos con memoria distribuida sigue siendo Message Passing Interface (MPI). Esta tesis propone la extensión del modelo de programación basado en tareas OmpSs-2 para su funcionamiento en sistemas de memoria distribuida, destacando 3 beneficios principales: En primer lugar; a pequeña y mediana escala, un modelo basado en tareas es más simple y productivo que MPI y elimina la necesidad de distribuir los datos explícitamente y convertir todas las dependencias en mensajes. Además, evita la complejidad de la programacion híbrida MPI+X. En segundo lugar; la capacidad de enviar partes del cálculo entre los nodos permite a la librería balancear la carga de trabajo en programas MPI+X a gran escala. Este enfoque no necesita un modelo de coste y permite equilibrar cargas transversalmente en todo el programa y todos los nodos. En tercer lugar; teniendo en cuenta que es la librería quien maneja todos los aspectos relacionados con distribución y transferencia de datos, es posible la modificación dinámica y transparente de los recursos que utiliza la aplicación. Esta tesis describe el diseño, desarrollo y evaluación de OmpSs-2@Cluster; un modelo de programación y librería que extiende OmpSs-2 permitiendo la ejecución de programas OmpSs-2 existentes en múltiples nodos sin prácticamente necesidad de modificarlos. Para aplicaciones balanceadas, este modelo proporciona un rendimiento similar a MPI+OpenMP hasta 16 nodos y duplica el rendimiento en aplicaciones irregulares o desbalanceadas como la factorización de Cholesky. Este trabajo incluye la extensión de OmpSs-2@Cluster para interactuar con MPI y la librería de balanceo de carga Dynamic Load Balancing (DLB) desarrollada en el Barcelona Supercomputing Center (BSC). De este modo es posible equilibrar aplicaciones MPI+OmpSs-2 mediante la transferencia transparente de tareas entre nodos. Este enfoque reduce el tiempo de ejecución de una aplicación de mecánica de sólidos a micro-escala en un 46% en 64 nodos; en algunos experimentos hasta 8 nodos se pudo equilibrar perfectamente la carga con una diferencia inferior al 10% del equilibrio perfecto. Finalmente, se implementó otra extensión de la librería para realizar operaciones de maleabilidad en programas OmpSs-2@Cluster e interactuar con el Sistema de Manejo de Recursos (RMS). El único cambio requerido en la aplicación es la llamada explicita a una función de la interfaz que controla la adición o eliminación de nodos. Además, se agregó la funcionalidad de guardar y recuperar parte del estado de la aplicación de forma semitransparente con el objetivo de realizar operaciones de salva-reinicio. Dicha funcionalidad oculta al usuario la complejidad de la redistribución de datos y las operaciones de lectura-escritura en paralelo, mientras permite al programa recuperar y continuar ejecuciones previas. Este es un punto de partida para futuras investigaciones en tolerancia a fallos. En resumen, OmpSs-2@Cluster amplía el modelo de programación de OmpSs-2 para abarcar sistemas de memoria distribuida. El modelo permite la ejecución de programas OmpSs-2 en múltiples nodos prácticamente sin necesidad de modificarlos. OmpSs-2@Cluster permite además el balanceo dinámico de carga en aplicaciones híbridas MPI+OmpSs-2 ejecutadas en varios nodos y es capaz de realizar maleabilidad semi-transparente en programas OmpSs-2@Cluster puros. La librería tiene un niveles de rendimiento y estabilidad altos y abre varios caminos para trabajos futuro.Arquitectura de computador

    A Machine Learning Enhanced Scheme for Intelligent Network Management

    Get PDF
    The versatile networking services bring about huge influence on daily living styles while the amount and diversity of services cause high complexity of network systems. The network scale and complexity grow with the increasing infrastructure apparatuses, networking function, networking slices, and underlying architecture evolution. The conventional way is manual administration to maintain the large and complex platform, which makes effective and insightful management troublesome. A feasible and promising scheme is to extract insightful information from largely produced network data. The goal of this thesis is to use learning-based algorithms inspired by machine learning communities to discover valuable knowledge from substantial network data, which directly promotes intelligent management and maintenance. In the thesis, the management and maintenance focus on two schemes: network anomalies detection and root causes localization; critical traffic resource control and optimization. Firstly, the abundant network data wrap up informative messages but its heterogeneity and perplexity make diagnosis challenging. For unstructured logs, abstract and formatted log templates are extracted to regulate log records. An in-depth analysis framework based on heterogeneous data is proposed in order to detect the occurrence of faults and anomalies. It employs representation learning methods to map unstructured data into numerical features, and fuses the extracted feature for network anomaly and fault detection. The representation learning makes use of word2vec-based embedding technologies for semantic expression. Next, the fault and anomaly detection solely unveils the occurrence of events while failing to figure out the root causes for useful administration so that the fault localization opens a gate to narrow down the source of systematic anomalies. The extracted features are formed as the anomaly degree coupled with an importance ranking method to highlight the locations of anomalies in network systems. Two types of ranking modes are instantiated by PageRank and operation errors for jointly highlighting latent issue of locations. Besides the fault and anomaly detection, network traffic engineering deals with network communication and computation resource to optimize data traffic transferring efficiency. Especially when network traffic are constrained with communication conditions, a pro-active path planning scheme is helpful for efficient traffic controlling actions. Then a learning-based traffic planning algorithm is proposed based on sequence-to-sequence model to discover hidden reasonable paths from abundant traffic history data over the Software Defined Network architecture. Finally, traffic engineering merely based on empirical data is likely to result in stale and sub-optimal solutions, even ending up with worse situations. A resilient mechanism is required to adapt network flows based on context into a dynamic environment. Thus, a reinforcement learning-based scheme is put forward for dynamic data forwarding considering network resource status, which explicitly presents a promising performance improvement. In the end, the proposed anomaly processing framework strengthens the analysis and diagnosis for network system administrators through synthesized fault detection and root cause localization. The learning-based traffic engineering stimulates networking flow management via experienced data and further shows a promising direction of flexible traffic adjustment for ever-changing environments

    Debugging Techniques for Locating Defects in Software Architectures

    Get PDF
    The explicit design of the architecture for a software product is a well established part of development projects. As the software architecture descriptions are becoming larger and more complex, there is more likelihood of defects being present in the software architecture. Studies have shown that a defect in the software architecture that has propagated to the development phase is very expensive to fix. To prevent such propagation of defects, this research proposes to provide debugging support for software architecture design. Debugging is commonly used in programming languages to effectively find the cause of a failure and locate the error to provide a fix. The same should be accomplished in software architectures to debug architecture failures. Without debugging support, the software architect is unable to quickly locate and determine the source of an error. In our work, we define a process for debugging software architecture and provide analysis techniques to locate defects in a software architecture that fails to meet functional and non-functional requirements. We have implemented the techniques and provide an evaluation of the techniques based on examples using an industry standard architecture definition language, Architecture Analysis and Design Language (AADL)

    Application of Fiber Optic Technology in Reservoir Monitoring

    Get PDF
    The purpose of this thesis was to gain an overview of fields of application of fiber optic technology in reservoir monitoring, how such a measurement system is operated, and challenges that can occur. For automated and integrated processes in the exploration and production of hydrocarbons, the information available before, during, and after operations is of great value. Where to place wells and templates, at which rate and when production and injection is to take place are just a few of the decisions in such processes. Fiber optic technology which is common in reservoir monitoring tools in a production well, is also used for seismic and monitoring of the subsurface and pipelines along the seabed. Fiber optic measurement systems are of great value thanks to real-time data, which are an advantage in decisions to be made on short notice. By implementing fiber optic sensing elements along a wellbore, from the reservoir section and up to the surface, well intervention operations, testing of downhole safety equipment, well integrity assurance, and an active reservoir management on drainage and injection strategies can be optimized and profitability maximized. With in-well fiber optics already in place, they can be used for various operations. From cementing a liner, reservoir monitoring, and fluid characterization, to measuring strain and conditions of downhole equipment. Published papers, course material and equipment from Weatherford, discussion with field specialists, and personal experience have been the basis of the thesis. It was successfully demonstrated how a bad splice affects the optical power transmitted through a fiber optic cable, that attenuation on the emitted light has a boundary, and how important a test of an entire measurement system before operations is. The installations by Equinor at the Johan Sverdrup field are a good example of benefiting from implementation of technology from the start of development. The digitalization of the green field is part of their high ambition of a 70 % recovery. Fiber optics are a great choice of measurement systems for reservoir monitoring with many sensing elements already available in today’s market, and will most likely be a preferred choice for monitoring many wells and reservoirs in the years to come
    corecore