27,115 research outputs found

    Knowledge-based System to Support Architectural Design. Intelligent objects, project net-constraints, collaborative work

    Get PDF
    The architectural design business is marked by a progressive increase in operators all cooperating towards the realization of building structures and complex infrastructures (Jenckes, 1997). This type of design implies the simulta-neous activity of specialists in different fields, often working a considerable dis-tance apart, on increasingly distributed design studies. Collaborative Architectural Design comprises a vast field of studies that em-braces also these sectors and problems. To mention but a few: communication among operators in the building and design sector; design process system logic architecture; conceptual structure of the building organism; building component representation; conflict identification and management; sharing of knowledge; and also, user interface; global evaluation of solutions adopted; IT definition of objects; inter-object communication (in the IT sense). The point of view of the research is that of the designers of the architectural arte-fact (Simon, 1996); its focus consists of the relations among the various design operators and among the latter and the information exchanged: the Building Objects. Its primary research goal is thus the conceptual structure of the building organ-ism for the purpose of managing conflicts and developing possible methods of resolving them

    Case-based reasoning in design: An apologia

    Get PDF
    Three positions are presented and defended: the process of generating solutions in problem solving is viewable as a design task; case-based reasoning is a strong method of problem solving; and a synergism exists between case-based reasoning and design problem solving

    Marking complex assignments using peer assessment with an electronic voting system and an automated feedback tool

    Get PDF
    The work described in this paper relates to the development and use of a range of initiatives in order to mark complex masters' level assignments related to the development of computer web applications. In the past such assignments have proven difficult to mark since they assess a range of skills including programming, human computer interaction and design. Based on the experience of several years marking such assignments, the module delivery team decided to adopt an approach whereby the students marked each other's practical work using an electronic voting system (EVS). The results of this are presented in the paper along with statistical comparison with the tutors' marking, providing evidence for the efficacy of the approach. The second part of the assignment related to theory and documentation. This was marked by the tutors using an automated feedback tool. It was found that the time to mark the work was reduced by more than 30% in all cases compared to previous years. More importantly it was possible to provide good quality individual feedback to learners rapidly. Feedback was delivered to all within three weeks of the test submission datePeer reviewe

    Computer-aided verification in mechanism design

    Full text link
    In mechanism design, the gold standard solution concepts are dominant strategy incentive compatibility and Bayesian incentive compatibility. These solution concepts relieve the (possibly unsophisticated) bidders from the need to engage in complicated strategizing. While incentive properties are simple to state, their proofs are specific to the mechanism and can be quite complex. This raises two concerns. From a practical perspective, checking a complex proof can be a tedious process, often requiring experts knowledgeable in mechanism design. Furthermore, from a modeling perspective, if unsophisticated agents are unconvinced of incentive properties, they may strategize in unpredictable ways. To address both concerns, we explore techniques from computer-aided verification to construct formal proofs of incentive properties. Because formal proofs can be automatically checked, agents do not need to manually check the properties, or even understand the proof. To demonstrate, we present the verification of a sophisticated mechanism: the generic reduction from Bayesian incentive compatible mechanism design to algorithm design given by Hartline, Kleinberg, and Malekian. This mechanism presents new challenges for formal verification, including essential use of randomness from both the execution of the mechanism and from the prior type distributions. As an immediate consequence, our work also formalizes Bayesian incentive compatibility for the entire family of mechanisms derived via this reduction. Finally, as an intermediate step in our formalization, we provide the first formal verification of incentive compatibility for the celebrated Vickrey-Clarke-Groves mechanism

    Considerations for a design and operations knowledge support system for Space Station Freedom

    Get PDF
    Engineering and operations of modern engineered systems depend critically upon detailed design and operations knowledge that is accurate and authoritative. A design and operations knowledge support system (DOKSS) is a modern computer-based information system providing knowledge about the creation, evolution, and growth of an engineered system. The purpose of a DOKSS is to provide convenient and effective access to this multifaceted information. The complexity of Space Station Freedom's (SSF's) systems, elements, interfaces, and organizations makes convenient access to design knowledge especially important, when compared to simpler systems. The life cycle length, being 30 or more years, adds a new dimension to space operations, maintenance, and evolution. Provided here is a review and discussion of design knowledge support systems to be delivered and operated as a critical part of the engineered system. A concept of a DOKSS for Space Station Freedom (SSF) is presented. This is followed by a detailed discussion of a DOKSS for the Lyndon B. Johnson Space Center and Work Package-2 portions of SSF
    • …
    corecore