66,136 research outputs found

    Automated Expert System Knowledge Base Development Method for Information Security Risk Analysis

    Get PDF
    Information security risk analysis is a compulsory requirement both from the side of regulating documents and information security management decision making process. Some researchers propose using expert systems (ES) for process automation, but this approach requires the creation of a high-quality knowledge base. A knowledge base can be formed both from expert knowledge or information collected from other sources of information. The problem of such approach is that experts or good quality knowledge sources are expensive. In this paper we propose the problem solution by providing an automated ES knowledge base development method. The method proposed is novel since unlike other methods it does not integrate ontology directly but utilizes automated transformation of existing information security ontology elements into ES rules: The Web Ontology Rule Language (OWL RL) subset of ontology is segregated into Resource Description Framework (RDF) triplets, that are transformed into Rule Interchange Format (RIF); RIF rules are converted into Java Expert System Shell (JESS) knowledge base rules. The experiments performed have shown the principal method applicability. The created knowledge base was later verified by performing comparative risk analysis in a sample company

    Automated Expert System Knowledge Base Development Method for Information Security Risk Analysis

    Get PDF
    Information security risk analysis is a compulsory requirement both from the side of regulating documents and information security management decision making process. Some researchers propose using expert systems (ES) for process automation, but this approach requires the creation of a high-quality knowledge base. A knowledge base can be formed both from expert knowledge or information collected from other sources of information. The problem of such approach is that experts or good quality knowledge sources are expensive. In this paper we propose the problem solution by providing an automated ES knowledge base development method. The method proposed is novel since unlike other methods it does not integrate ontology directly but utilizes automated transformation of existing information security ontology elements into ES rules: The Web Ontology Rule Language (OWL RL) subset of ontology is segregated into Resource Description Framework (RDF) triplets, that are transformed into Rule Interchange Format (RIF); RIF rules are converted into Java Expert System Shell (JESS) knowledge base rules. The experiments performed have shown the principal method applicability. The created knowledge base was later verified by performing comparative risk analysis in a sample company

    Dynamic Expert System-Based Geographically Adapted Malware Risk Evaluation Method

    Get PDF
    Fast development of information systems and technologies while providing new opportunities for people and organizations also make them more vulnerable at the same time. Information security risk assessment helps to identify weak points and preparing mitigation actions. The analysis of expert systems has shown that rule-based expert systems are universal, and because of that can be considered as a proper solution for the task of risk assessment automation. But to assess information security risks quickly and accurately, it is necessary to process a large amount of data about newly discovered vulnerabilities or threats, to reflect regional and industry specific information, making the traditional approach of knowledge base formation for expert system problematic. This work presents a novel method for an automated expert systems knowledge base formation based on the integration of data on regional malware distribution from Cyberthreat real-time map providing current information on newly discovered threats. In our work we collect the necessary information from the web sites in an automated way, that can be later used in a relevant risk calculation. This paper presents method implementation, which includes not only knowledge base formation but also the development of the prototype of an expert system. It was created using the JESS expert system shell. Information security risk evaluation was performed according to OWASP risk assessment methodology, taking into account the location of the organization and prevalent malware in that area.This is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International License

    Towards Automating the Construction & Maintenance of Attack Trees: a Feasibility Study

    Full text link
    Security risk management can be applied on well-defined or existing systems; in this case, the objective is to identify existing vulnerabilities, assess the risks and provide for the adequate countermeasures. Security risk management can also be applied very early in the system's development life-cycle, when its architecture is still poorly defined; in this case, the objective is to positively influence the design work so as to produce a secure architecture from the start. The latter work is made difficult by the uncertainties on the architecture and the multiple round-trips required to keep the risk assessment study and the system architecture aligned. This is particularly true for very large projects running over many years. This paper addresses the issues raised by those risk assessment studies performed early in the system's development life-cycle. Based on industrial experience, it asserts that attack trees can help solve the human cognitive scalability issue related to securing those large, continuously-changing system-designs. However, big attack trees are difficult to build, and even more difficult to maintain. This paper therefore proposes a systematic approach to automate the construction and maintenance of such big attack trees, based on the system's operational and logical architectures, the system's traditional risk assessment study and a security knowledge database.Comment: In Proceedings GraMSec 2014, arXiv:1404.163

    Run-time risk management in adaptive ICT systems

    No full text
    We will present results of the SERSCIS project related to risk management and mitigation strategies in adaptive multi-stakeholder ICT systems. The SERSCIS approach involves using semantic threat models to support automated design-time threat identification and mitigation analysis. The focus of this paper is the use of these models at run-time for automated threat detection and diagnosis. This is based on a combination of semantic reasoning and Bayesian inference applied to run-time system monitoring data. The resulting dynamic risk management approach is compared to a conventional ISO 27000 type approach, and validation test results presented from an Airport Collaborative Decision Making (A-CDM) scenario involving data exchange between multiple airport service providers

    Reinforcement learning for efficient network penetration testing

    Get PDF
    Penetration testing (also known as pentesting or PT) is a common practice for actively assessing the defenses of a computer network by planning and executing all possible attacks to discover and exploit existing vulnerabilities. Current penetration testing methods are increasingly becoming non-standard, composite and resource-consuming despite the use of evolving tools. In this paper, we propose and evaluate an AI-based pentesting system which makes use of machine learning techniques, namely reinforcement learning (RL) to learn and reproduce average and complex pentesting activities. The proposed system is named Intelligent Automated Penetration Testing System (IAPTS) consisting of a module that integrates with industrial PT frameworks to enable them to capture information, learn from experience, and reproduce tests in future similar testing cases. IAPTS aims to save human resources while producing much-enhanced results in terms of time consumption, reliability and frequency of testing. IAPTS takes the approach of modeling PT environments and tasks as a partially observed Markov decision process (POMDP) problem which is solved by POMDP-solver. Although the scope of this paper is limited to network infrastructures PT planning and not the entire practice, the obtained results support the hypothesis that RL can enhance PT beyond the capabilities of any human PT expert in terms of time consumed, covered attacking vectors, accuracy and reliability of the outputs. In addition, this work tackles the complex problem of expertise capturing and re-use by allowing the IAPTS learning module to store and re-use PT policies in the same way that a human PT expert would learn but in a more efficient way

    Post-Westgate SWAT : C4ISTAR Architectural Framework for Autonomous Network Integrated Multifaceted Warfighting Solutions Version 1.0 : A Peer-Reviewed Monograph

    Full text link
    Police SWAT teams and Military Special Forces face mounting pressure and challenges from adversaries that can only be resolved by way of ever more sophisticated inputs into tactical operations. Lethal Autonomy provides constrained military/security forces with a viable option, but only if implementation has got proper empirically supported foundations. Autonomous weapon systems can be designed and developed to conduct ground, air and naval operations. This monograph offers some insights into the challenges of developing legal, reliable and ethical forms of autonomous weapons, that address the gap between Police or Law Enforcement and Military operations that is growing exponentially small. National adversaries are today in many instances hybrid threats, that manifest criminal and military traits, these often require deployment of hybrid-capability autonomous weapons imbued with the capability to taken on both Military and/or Security objectives. The Westgate Terrorist Attack of 21st September 2013 in the Westlands suburb of Nairobi, Kenya is a very clear manifestation of the hybrid combat scenario that required military response and police investigations against a fighting cell of the Somalia based globally networked Al Shabaab terrorist group.Comment: 52 pages, 6 Figures, over 40 references, reviewed by a reade

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures

    Considerations for a design and operations knowledge support system for Space Station Freedom

    Get PDF
    Engineering and operations of modern engineered systems depend critically upon detailed design and operations knowledge that is accurate and authoritative. A design and operations knowledge support system (DOKSS) is a modern computer-based information system providing knowledge about the creation, evolution, and growth of an engineered system. The purpose of a DOKSS is to provide convenient and effective access to this multifaceted information. The complexity of Space Station Freedom's (SSF's) systems, elements, interfaces, and organizations makes convenient access to design knowledge especially important, when compared to simpler systems. The life cycle length, being 30 or more years, adds a new dimension to space operations, maintenance, and evolution. Provided here is a review and discussion of design knowledge support systems to be delivered and operated as a critical part of the engineered system. A concept of a DOKSS for Space Station Freedom (SSF) is presented. This is followed by a detailed discussion of a DOKSS for the Lyndon B. Johnson Space Center and Work Package-2 portions of SSF
    corecore