3,558 research outputs found

    Automated Error-Detection and Repair for Compositional Software Specifications

    Get PDF

    Availability analysis of software architecture decomposition alternatives for local recovery

    Get PDF
    We present an efficient and easy-to-use methodology to predict—at design time—the availability of systems that support local recovery. Our analysis techniques work at the architectural level, where the software designer simply inputs the software modules’ decomposition annotated with failure and repair rates. From this decomposition, we automatically generate an analytical model (a continuous-time Markov chain), from which an availability measure is then computed, in a completely automated way. A crucial step is the use of intermediate models in the input/output interactive Markov chain formalism, which makes our techniques efficient, mathematically rigorous, and easy to adapt. In particular, we use aggressive minimization techniques to keep the size of the generated state spaces small. We have applied our methodology on a realistic case study, namely the MPlayer open-source software. We have investigated four different decomposition alternatives and compared our analytical results with the measured availability on a running MPlayer. We found that our predicted results closely match the measured ones

    Engineering failure analysis and design optimisation with HiP-HOPS

    Get PDF
    The scale and complexity of computer-based safety critical systems, like those used in the transport and manufacturing industries, pose significant challenges for failure analysis. Over the last decade, research has focused on automating this task. In one approach, predictive models of system failure are constructed from the topology of the system and local component failure models using a process of composition. An alternative approach employs model-checking of state automata to study the effects of failure and verify system safety properties. In this paper, we discuss these two approaches to failure analysis. We then focus on Hierarchically Performed Hazard Origin & Propagation Studies (HiP-HOPS) - one of the more advanced compositional approaches - and discuss its capabilities for automatic synthesis of fault trees, combinatorial Failure Modes and Effects Analyses, and reliability versus cost optimisation of systems via application of automatic model transformations. We summarise these contributions and demonstrate the application of HiP-HOPS on a simplified fuel oil system for a ship engine. In light of this example, we discuss strengths and limitations of the method in relation to other state-of-the-art techniques. In particular, because HiP-HOPS is deductive in nature, relating system failures back to their causes, it is less prone to combinatorial explosion and can more readily be iterated. For this reason, it enables exhaustive assessment of combinations of failures and design optimisation using computationally expensive meta-heuristics. (C) 2010 Elsevier Ltd. All rights reserved

    MintHint: Automated Synthesis of Repair Hints

    Full text link
    Being able to automatically repair programs is an extremely challenging task. In this paper, we present MintHint, a novel technique for program repair that is a departure from most of today's approaches. Instead of trying to fully automate program repair, which is often an unachievable goal, MintHint performs statistical correlation analysis to identify expressions that are likely to occur in the repaired code and generates, using pattern-matching based synthesis, repair hints from these expressions. Intuitively, these hints suggest how to rectify a faulty statement and help developers find a complete, actual repair. MintHint can address a variety of common faults, including incorrect, spurious, and missing expressions. We present a user study that shows that developers' productivity can improve manyfold with the use of repair hints generated by MintHint -- compared to having only traditional fault localization information. We also apply MintHint to several faults of a widely used Unix utility program to further assess the effectiveness of the approach. Our results show that MintHint performs well even in situations where (1) the repair space searched does not contain the exact repair, and (2) the operational specification obtained from the test cases for repair is incomplete or even imprecise

    Integrated Reasoning and Proof Choice Point Selection in the Jahob System – Mechanisms for Program Survival

    Get PDF
    In recent years researchers have developed a wide range of powerful automated reasoning systems. We have leveraged these systems to build Jahob, a program specification, analysis, and verification system. In contrast to many such systems, which use a monolithic reasoning approach, Jahob provides a general integrated reasoning framework, which enables multiple automated reasoning systems to work together to prove the desired program correctness properties. We have used Jahob to prove the full functional correctness of a collection of linked data structure implementations. The automated reasoning systems are able to automatically perform the vast majority of the reasoning steps required for this verification. But there are some complex verification conditions that they fail to prove. We have therefore developed a proof language, integrated into the underlying imperative Java programming language, that developers can use to control key choice points in the proof search space. Once the developer has resolved these choice points, the automated reasoning systems are able to complete the verification. This approach appropriately leverages both the developer’s insight into the high-level structure of the proof and the ability of the automated reasoning systems to perform the mechanical steps required to prove the verification conditions. Building on Jahob’s success with this challenging program verification problem, we contemplate the possibility of verifying the complete absence of fatal errors in large software systems. We envision combining simple techniques that analyze the vast majority of the program with heavyweight techniques that analyze those more sophisticated parts of the program that may require arbitrarily sophisticated reasoning. Modularity mechanisms such as abstract data types enable the sound division of the program for this purpose. The goal is not a completely correct program, but a program that can survive any remaining errors to continue to provide acceptable service
    • …
    corecore