6,766 research outputs found

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    IMPROVING RADIOTHERAPY WORKFLOW: EVALUATION AND IMPLEMENTATION OF DEEP LEARNING AUTO-SEGMENTATION IN A MULTI-USER ENVIRONMENT, AND DEVELOPMENT OF AUTOMATIC CONTOUR QUALITY ASSURANCE SYSTEM

    Get PDF
    Radiotherapy is a frequently used therapeutic modality for cancer patients. Accurately contouring of tumors and organs at risk (OARs) is critical for developing optimal treatment plans in radiotherapy, especially after the implementation of Intensity-modulated radiation therapy (IMRT) and Stereotactic Body Radiation Therapy (SBRT). The manual contouring process is time-consuming and suffers from inter-observer variations. However, manual contouring is often hindered by laborious clinical duties, leading to reduced effectiveness, and increased segmentation errors due to fatigue. Additionally, online adaptive radiation therapy(ART), which has been shown to benefit patient outcomes, places higher demands on contouring and quality assurance (QA) speed. Recently, deep learning auto-segmentation (DLAS) has emerged as an accurate tool for contouring in many anatomical sites. However, DLAS\u27s black-box nature has limited its widespread clinical implementation. Robust evaluations are required prior to the clinical implementation. In this thesis, we present our comprehensive validation approach for assessing the clinical acceptability of DLAS contours in the male pelvis region for automated prostate treatment planning. We then evaluated the DLAS model\u27s capacity for continuous improvement and generalizability and successfully adopted it in a multi-user environment. Additionally, we provided an implementation workflow for this software that can be used by other clinical users. Manual reviewing contour is a time-consuming process that is prone to errors and omissions, leading to dosimetric uncertainties and lower quality of radiation treatment. To assist with the manual contour review process, an automated contouring QA tool is necessary. We proposed a machine learning-based methodology for an automated contour quality assurance system that detects errors in manual contouring, using the precise DLAS contour as a reference. Moreover, we established a knowledge-based contour QA system that can localize and categorize contour errors for improved accuracy and efficiency. Overall, this dissertation provides a more comprehensive understanding of DLAS in a clinical multi-user environment, which will improve the quality and safety of the radiotherapy workflow

    Computer aided diagnosis of coronary artery disease, myocardial infarction and carotid atherosclerosis using ultrasound images: a review

    Get PDF
    The diagnosis of Coronary Artery Disease (CAD), Myocardial Infarction (MI) and carotid atherosclerosis is of paramount importance, as these cardiovascular diseases may cause medical complications and large number of death. Ultrasound (US) is a widely used imaging modality, as it captures moving images and image features correlate well with results obtained from other imaging methods. Furthermore, US does not use ionizing radiation and it is economical when compared to other imaging modalities. However, reading US images takes time and the relationship between image and tissue composition is complex. Therefore, the diagnostic accuracy depends on both time taken to read the images and experience of the screening practitioner. Computer support tools can reduce the inter-operator variability with lower subject specific expertise, when appropriate processing methods are used. In the current review, we analysed automatic detection methods for the diagnosis of CAD, MI and carotid atherosclerosis based on thoracic and Intravascular Ultrasound (IVUS). We found that IVUS is more often used than thoracic US for CAD. But for MI and carotid atherosclerosis IVUS is still in the experimental stage. Furthermore, thoracic US is more often used than IVUS for computer aided diagnosis systems

    Novel autosegmentation spatial similarity metrics capture the time required to correct segmentations better than traditional metrics in a thoracic cavity segmentation workflow

    Get PDF
    Automated segmentation templates can save clinicians time compared to de novo segmentation but may still take substantial time to review and correct. It has not been thoroughly investigated which automated segmentation-corrected segmentation similarity metrics best predict clinician correction time. Bilateral thoracic cavity volumes in 329 CT scans were segmented by a UNet-inspired deep learning segmentation tool and subsequently corrected by a fourth-year medical student. Eight spatial similarity metrics were calculated between the automated and corrected segmentations and associated with correction times using Spearman\u27s rank correlation coefficients. Nine clinical variables were also associated with metrics and correction times using Spearman\u27s rank correlation coefficients or Mann-Whitney U tests. The added path length, false negative path length, and surface Dice similarity coefficient correlated better with correction time than traditional metrics, including the popular volumetric Dice similarity coefficient (respectively ρ = 0.69, ρ = 0.65, ρ =  - 0.48 versus ρ =  - 0.25; correlation p values \u3c 0.001). Clinical variables poorly represented in the autosegmentation tool\u27s training data were often associated with decreased accuracy but not necessarily with prolonged correction time. Metrics used to develop and evaluate autosegmentation tools should correlate with clinical time saved. To our knowledge, this is only the second investigation of which metrics correlate with time saved. Validation of our findings is indicated in other anatomic sites and clinical workflows. Novel spatial similarity metrics may be preferable to traditional metrics for developing and evaluating autosegmentation tools that are intended to save clinicians time

    Lung_PAYNet: a pyramidal attention based deep learning network for lung nodule segmentation

    Get PDF
    Accurate and reliable lung nodule segmentation in computed tomography (CT) images is required for early diagnosis of lung cancer. Some of the difficulties in detecting lung nodules include the various types and shapes of lung nodules, lung nodules near other lung structures, and similar visual aspects. This study proposes a new model named Lung_PAYNet, a pyramidal attention-based architecture, for improved lung nodule segmentation in low-dose CT images. In this architecture, the encoder and decoder are designed using an inverted residual block and swish activation function. It also employs a feature pyramid attention network between the encoder and decoder to extract exact dense features for pixel classification. The proposed architecture was compared to the existing UNet architecture, and the proposed methodology yielded significant results. The proposed model was comprehensively trained and validated using the LIDC-IDRI dataset available in the public domain. The experimental results revealed that the Lung_PAYNet delivered remarkable segmentation with a Dice similarity coefficient of 95.7%, mIOU of 91.75%, sensitivity of 92.57%, and precision of 96.75%

    Quantitative Analysis of Radiation-Associated Parenchymal Lung Change

    Get PDF
    Radiation-induced lung damage (RILD) is a common consequence of thoracic radiotherapy (RT). We present here a novel classification of the parenchymal features of RILD. We developed a deep learning algorithm (DLA) to automate the delineation of 5 classes of parenchymal texture of increasing density. 200 scans were used to train and validate the network and the remaining 30 scans were used as a hold-out test set. The DLA automatically labelled the data with Dice Scores of 0.98, 0.43, 0.26, 0.47 and 0.92 for the 5 respective classes. Qualitative evaluation showed that the automated labels were acceptable in over 80% of cases for all tissue classes, and achieved similar ratings to the manual labels. Lung registration was performed and the effect of radiation dose on each tissue class and correlation with respiratory outcomes was assessed. The change in volume of each tissue class over time generated by manual and automated segmentation was calculated. The 5 parenchymal classes showed distinct temporal patterns We quantified the volumetric change in textures after radiotherapy and correlate these with radiotherapy dose and respiratory outcomes. The effect of local dose on tissue class revealed a strong dose-dependent relationship We have developed a novel classification of parenchymal changes associated with RILD that show a convincing dose relationship. The tissue classes are related to both global and local dose metrics, and have a distinct evolution over time. Although less strong, there is a relationship between the radiological texture changes we can measure and respiratory outcomes, particularly the MRC score which directly represents a patient’s functional status. We have demonstrated the potential of using our approach to analyse and understand the morphological and functional evolution of RILD in greater detail than previously possible

    Recent Advances in Machine Learning Applied to Ultrasound Imaging

    Get PDF
    Machine learning (ML) methods are pervading an increasing number of fields of application because of their capacity to effectively solve a wide variety of challenging problems. The employment of ML techniques in ultrasound imaging applications started several years ago but the scientific interest in this issue has increased exponentially in the last few years. The present work reviews the most recent (2019 onwards) implementations of machine learning techniques for two of the most popular ultrasound imaging fields, medical diagnostics and non-destructive evaluation. The former, which covers the major part of the review, was analyzed by classifying studies according to the human organ investigated and the methodology (e.g., detection, segmentation, and/or classification) adopted, while for the latter, some solutions to the detection/classification of material defects or particular patterns are reported. Finally, the main merits of machine learning that emerged from the study analysis are summarized and discussed. © 2022 by the authors. Licensee MDPI, Basel, Switzerland
    corecore