2,159 research outputs found

    Thirty years of artificial intelligence and law : the third decade

    Get PDF

    Hybrid structural health monitoring using data-driven modal analysis and model-based Bayesian inference.

    Get PDF
    Civil infrastructures that are valuable assets for the public and owners must be adequately and periodically maintained to guarantee safety, continuous service, and avoid economic losses. Vibration-based structural health monitoring (VBSHM) has been a significant tool to assess the structural performance of civil infrastructures over the last decades. Challenges in VBSHM exist in two aspects: operational modal analysis (OMA) and Finite element model updating (FEMU). The former aims to extract natural frequency, damping ratio, and mode shapes using vibrational data under normal operation; the latter focuses on minimizing the discrepancies between measurements and model prediction. The main impediments to real-world application of VBSHM include 1) uncertainties are inevitably involved due to measurement noise and modeling error; 2) computational burden in analyzing massive data and high-fidelity model; 3) updating structural coupled parameters, e.g., mass and stiffness. Bayesian model updating approach (BMUA) is an advanced FEMU technique to update structural parameters using modal data and account for underlying uncertainties. However, traditional BMUA generally assumes mass is precisely known and only updating stiffness to circumvent the coupling effect of mass and stiffness. Simultaneously updating mass and stiffness is necessary to fully understand the structural integrity, especially when the mass has a relatively large variation. To tackle these challenges, this dissertation proposed a hybrid framework using data-driven and model-based approaches in two sequential phases: automated OMA and a BMUA with added mass/stiffness. Automated stochastic subspace identification (SSI) and Bayesian modal identification are firstly developed to acquire modal properties. Following by a novel BMUA, new eigen-equations based on two sets of modal data from the original and modified system with added mass or stiffness are derived to address the coupling effect of structural parameters, e.g., mass and stiffness. To avoid multi-dimensional integrals, an asymptotic optimization method and Differential Evolutionary Adaptive Metropolis (DREAM) sampling algorithm are employed for Bayesian inference. To alleviate computational burden, variance-based global sensitivity analysis to reduce model dimensionality and Kriging model to substitute time-consuming FEM are integrated into BMUA. The proposed VBSHM are verified and illustrated using numerical, laboratory and field test data, achieving following goals: 1) properly treating parameter uncertainties; 2) substantially reducing the computational cost; 3) simultaneously updating structural parameters with addressing the coupling effect; 4) performing the probabilistic damage identification at an accurate level

    Classification & prediction methods and their application

    Get PDF

    Text Mining for Big Data Analysis in Financial Sector: A Literature Review

    Get PDF
    Big data technologies have a strong impact on different industries, starting from the last decade, which continues nowadays, with the tendency to become omnipresent. The financial sector, as most of the other sectors, concentrated their operating activities mostly on structured data investigation. However, with the support of big data technologies, information stored in diverse sources of semi-structured and unstructured data could be harvested. Recent research and practice indicate that such information can be interesting for the decision-making process. Questions about how and to what extent research on data mining in the financial sector has developed and which tools are used for these purposes remains largely unexplored. This study aims to answer three research questions: (i) What is the intellectual core of the field? (ii) Which techniques are used in the financial sector for textual mining, especially in the era of the Internet, big data, and social media? (iii) Which data sources are the most often used for text mining in the financial sector, and for which purposes? In order to answer these questions, a qualitative analysis of literature is carried out using a systematic literature review, citation and co-citation analysis

    Tactical entanglements:AI art, creative agency, and the limits of intellectual property

    Get PDF
    How do artistic experiments with artificial intelligence problematize human-centered notions of creative agency, authorship, and ownership? Offering a wide-ranging discussion of contemporary digital art practices, philosophical and technical considerations of AI, posthumanist thought, and emerging issues of intellectual property and the commons, this book is firmly positioned against the anthropomorphic spectacle of “creative AI.” It proposes instead the concept of the posthumanist agential assemblage, and invites readers to consider what new types of creative practice, what reconfigurations of the author function, and what critical interventions become possible when AI art provokes tactical entanglements between aesthetics, law, and capital

    Automated Patent Categorization and Guided Patent Search using IPC as Inspired by MeSH and PubMed

    Get PDF
    The patent domain is a very important source of scientific information that is currently not used to its full potential. Searching for relevant patents is a complex task because the number of existing patents is very high and grows quickly, patent text is extremely complicated, and standard vocabulary is not used consistently or doesn’t even exist. As a consequence, pure keyword searches often fail to return satisfying results in the patent domain. Major companies employ patent professionals who are able to search patents effectively, but even they have to invest a lot of time and effort into their search. Academic scientists on the other hand do not have access to such resources and therefore often do not search patents at all, but they risk missing up-to-date information that will not be published in scientific publications until much later, if it is published at all. Document search on PubMed, the pre-eminent database for biomedical literature, relies on the annotation of its documents with relevant terms from the Medical Subject Headings ontology (MeSH) for improving recall through query expansion. Similarly, professional patent searches expand beyond keywords by including class codes from various patent classification systems. However, classification-based searches can only be performed effectively if the user has very detailed knowledge of the system, which is usually not the case for academic scientists. Consequently, we investigated methods to automatically identify relevant classes that can then be suggested to the user to expand their query. Since every patent is assigned at least one class code, it should be possible for these assignments to be used in a similar way as the MeSH annotations in PubMed. In order to develop a system for this task, it is necessary to have a good understanding of the properties of both classification systems. In order to gain such knowledge, we perform an in-depth comparative analysis of MeSH and the main patent classification system, the International Patent Classification (IPC). We investigate the hierarchical structures as well as the properties of the terms/classes respectively, and we compare the assignment of IPC codes to patents with the annotation of PubMed documents with MeSH terms. Our analysis shows that the hierarchies are structurally similar, but terms and annotations differ significantly. The most important differences concern the considerably higher complexity of the IPC class definitions compared to MeSH terms and the far lower number of class assignments to the average patent compared to the number of MeSH terms assigned to PubMed documents. As a result of these differences, problems are caused both for unexperienced patent searchers and professionals. On the one hand, the complex term system makes it very difficult for members of the former group to find any IPC classes that are relevant for their search task. On the other hand, the low number of IPC classes per patent points to incomplete class assignments by the patent office, therefore limiting the recall of the classification-based searches that are frequently performed by the latter group. We approach these problems from two directions: First, by automatically assigning additional patent classes to make up for the missing assignments, and second, by automatically retrieving relevant keywords and classes that are proposed to the user so they can expand their initial search. For the automated assignment of additional patent classes, we adapt an approach to the patent domain that was successfully used for the assignment of MeSH terms to PubMed abstracts. Each document is assigned a set of IPC classes by a large set of binary Maximum-Entropy classifiers. Our evaluation shows good performance by individual classifiers (precision/recall between 0:84 and 0:90), making the retrieval of additional relevant documents for specific IPC classes feasible. The assignment of additional classes to specific documents is more problematic, since the precision of our classifiers is not high enough to avoid false positives. However, we propose filtering methods that can help solve this problem. For the guided patent search, we demonstrate various methods to expand a user’s initial query. Our methods use both keywords and class codes that the user enters to retrieve additional relevant keywords and classes that are then suggested to the user. These additional query components are extracted from different sources such as patent text, IPC definitions, external vocabularies and co-occurrence data. The suggested expansions can help unexperienced users refine their queries with relevant IPC classes, and professionals can compose their complete query faster and more easily. We also present GoPatents, a patent retrieval prototype that incorporates some of our proposals and makes faceted browsing of a patent corpus possible

    Study on open science: The general state of the play in Open Science principles and practices at European life sciences institutes

    Get PDF
    Nowadays, open science is a hot topic on all levels and also is one of the priorities of the European Research Area. Components that are commonly associated with open science are open access, open data, open methodology, open source, open peer review, open science policies and citizen science. Open science may a great potential to connect and influence the practices of researchers, funding institutions and the public. In this paper, we evaluate the level of openness based on public surveys at four European life sciences institute

    In no uncertain terms : a dataset for monolingual and multilingual automatic term extraction from comparable corpora

    Get PDF
    Automatic term extraction is a productive field of research within natural language processing, but it still faces significant obstacles regarding datasets and evaluation, which require manual term annotation. This is an arduous task, made even more difficult by the lack of a clear distinction between terms and general language, which results in low inter-annotator agreement. There is a large need for well-documented, manually validated datasets, especially in the rising field of multilingual term extraction from comparable corpora, which presents a unique new set of challenges. In this paper, a new approach is presented for both monolingual and multilingual term annotation in comparable corpora. The detailed guidelines with different term labels, the domain- and language-independent methodology and the large volumes annotated in three different languages and four different domains make this a rich resource. The resulting datasets are not just suited for evaluation purposes but can also serve as a general source of information about terms and even as training data for supervised methods. Moreover, the gold standard for multilingual term extraction from comparable corpora contains information about term variants and translation equivalents, which allows an in-depth, nuanced evaluation

    Influence of common lighting conditions and time-of-day on the effort-related cardiac response

    Get PDF
    Melanopic stimuli trigger diverse non-image-forming effects. However, evidence of a melanopic contribution to acute effects on alertness and performance is inconclusive, especially under common lighting situations. Effects on cognitive performance are likely mediated by effort-related physiological changes. We assessed the acute effects of lighting in three scenarios, at two times of day, on effort-related changes to cardiac contraction as indexed by the cardiac pre-ejection period (PEP). In a within-subject design, twenty-seven participants performed a cognitive task thrice during a morning and a late-afternoon session. We set the lighting at 500 lux in all three lighting scenarios, measured horizontally at the desk level, but with 54 lux, 128 lux, or 241 lux melanopic equivalent daylight illuminance at the eye level. Impedance cardiography and electrocardiography measurements were used to calculate PEP, for the baseline and task period. A shorter PEP during the task represents a sympathetic heart activation and therefore increased effort. Data were analysed with linear mixed-effect models. PEP changes depended on both the light scene and time of day (p = 0.01 and p = 0.002, respectively). The highest change (sympathetic activation) occurred for the medium one of the three stimuli (128 lux) during the late-afternoon session. However, effect sizes for the singular effects were small, and only for the combined effect of light and time of day middle-sized. Performance scores or self-reported scores on alertness and task demand did not change with the light scene. In conclusion, participants reached the same performance most efficiently at both the highest and lowest melanopic setting, and during the morning session. The resulting U-shaped relation between melanopic stimulus intensity and PEP is likely not dependent solely on intrinsic ipRGC stimuli, and might be moderated by extrinsic cone input. Since lighting situations were modelled according to current integrative lighting strategies and real-life indoor light intensities, the result has implications for artificial lighting in a work environment
    • …
    corecore