998 research outputs found

    Eight years of rider measurement in the Android malware ecosystem: evolution and lessons learned

    Full text link
    Despite the growing threat posed by Android malware, the research community is still lacking a comprehensive view of common behaviors and trends exposed by malware families active on the platform. Without such view, the researchers incur the risk of developing systems that only detect outdated threats, missing the most recent ones. In this paper, we conduct the largest measurement of Android malware behavior to date, analyzing over 1.2 million malware samples that belong to 1.2K families over a period of eight years (from 2010 to 2017). We aim at understanding how the behavior of Android malware has evolved over time, focusing on repackaging malware. In this type of threats different innocuous apps are piggybacked with a malicious payload (rider), allowing inexpensive malware manufacturing. One of the main challenges posed when studying repackaged malware is slicing the app to split benign components apart from the malicious ones. To address this problem, we use differential analysis to isolate software components that are irrelevant to the campaign and study the behavior of malicious riders alone. Our analysis framework relies on collective repositories and recent advances on the systematization of intelligence extracted from multiple anti-virus vendors. We find that since its infancy in 2010, the Android malware ecosystem has changed significantly, both in the type of malicious activity performed by the malicious samples and in the level of obfuscation used by malware to avoid detection. We then show that our framework can aid analysts who attempt to study unknown malware families. Finally, we discuss what our findings mean for Android malware detection research, highlighting areas that need further attention by the research community.Accepted manuscrip

    R2-D2: ColoR-inspired Convolutional NeuRal Network (CNN)-based AndroiD Malware Detections

    Full text link
    The influence of Deep Learning on image identification and natural language processing has attracted enormous attention globally. The convolution neural network that can learn without prior extraction of features fits well in response to the rapid iteration of Android malware. The traditional solution for detecting Android malware requires continuous learning through pre-extracted features to maintain high performance of identifying the malware. In order to reduce the manpower of feature engineering prior to the condition of not to extract pre-selected features, we have developed a coloR-inspired convolutional neuRal networks (CNN)-based AndroiD malware Detection (R2-D2) system. The system can convert the bytecode of classes.dex from Android archive file to rgb color code and store it as a color image with fixed size. The color image is input to the convolutional neural network for automatic feature extraction and training. The data was collected from Jan. 2017 to Aug 2017. During the period of time, we have collected approximately 2 million of benign and malicious Android apps for our experiments with the help from our research partner Leopard Mobile Inc. Our experiment results demonstrate that the proposed system has accurate security analysis on contracts. Furthermore, we keep our research results and experiment materials on http://R2D2.TWMAN.ORG.Comment: Verison 2018/11/15, IEEE BigData 2018, Seattle, WA, USA, Dec 10-13, 2018. (Accepted

    Ransomware in High-Risk Environments

    Get PDF
    In today’s modern world, cybercrime is skyrocketing globally, which impacts a variety of organizations and endpoint users. Hackers are using a multitude of approaches and tools, including ransomware threats, to take over targeted systems. These acts of cybercrime lead to huge damages in areas of business, healthcare systems, industry sectors, and other fields. Ransomware is considered as a high risk threat, which is designed to hijack the data. This paper is demonstrating the ransomware types, and how they are evolved from the malware and trojan codes, which is used to attack previous incidents, and explains the most common encryption algorithms such as AES, and RSA, ransomware uses them during infection process in order to produce complex threats. The practical approach for data encryption uses python programming language to show the efficiency of those algorithms in real attacks by executing this section on Ubuntu virtual machine. Furthermore, this paper analyzes programming languages, which is used to build ransomware. An example of ransomware code is being demonstrated in this paper, which is written specifically in C sharp language, and it has been tested out on windows operating system using MS visual studio. So, it is very important to recognize the system vulnerability, which can be very useful to prevent the ransomware. In contrast, this threat might sneak into the system easily, allowing for a ransom to be demanded. Therefore, understanding ransomware anatomy can help us to find a better solution in different situations. Consequently, this paper shows a number of outstanding removal techniques to get rid from ransomware attacks in the system

    Android Application Security Scanning Process

    Get PDF
    This chapter presents the security scanning process for Android applications. The aim is to guide researchers and developers to the core phases/steps required to analyze Android applications, check their trustworthiness, and protect Android users and their devices from being victims to different malware attacks. The scanning process is comprehensive, explaining the main phases and how they are conducted including (a) the download of the apps themselves; (b) Android application package (APK) reverse engineering; (c) app feature extraction, considering both static and dynamic analysis; (d) dataset creation and/or utilization; and (e) data analysis and data mining that result in producing detection systems, classification systems, and ranking systems. Furthermore, this chapter highlights the app features, evaluation metrics, mechanisms and tools, and datasets that are frequently used during the app’s security scanning process

    Ransomware in High-Risk Environments

    Get PDF
    In today’s modern world, cybercrime is skyrocketing globally, which impacts a variety of organizations and endpoint users. Hackers are using a multitude of approaches and tools, including ransomware threats, to take over targeted systems. These acts of cybercrime lead to huge damages in areas of business, healthcare systems, industry sectors, and other fields. Ransomware is considered as a high risk threat, which is designed to hijack the data. This paper is demonstrating the ransomware types, and how they are evolved from the malware and trojan codes, which is used to attack previous incidents, and explains the most common encryption algorithms such as AES, and RSA, ransomware uses them during infection process in order to produce complex threats. The practical approach for data encryption uses python programming language to show the efficiency of those algorithms in real attacks by executing this section on Ubuntu virtual machine. Furthermore, this paper analyzes programming languages, which is used to build ransomware. An example of ransomware code is being demonstrated in this paper, which is written specifically in C sharp language, and it has been tested out on windows operating system using MS visual studio. So, it is very important to recognize the system vulnerability, which can be very useful to prevent the ransomware. In contrast, this threat might sneak into the system easily, allowing for a ransom to be demanded. Therefore, understanding ransomware anatomy can help us to find a better solution in different situations. Consequently, this paper shows a number of outstanding removal techniques to get rid from ransomware attacks in the system

    Timed Automata for Mobile Ransomware Detection

    Get PDF
    Considering the plethora of private and sensitive information stored in smartphone and tablets, it is easy to understand the reason why attackers develop everyday more and more aggressive malicious payloads with the aim to exfiltrate our data. One of the last trend in mobile malware landascape is represented by the so-called ransomware, a threat capable to lock the user interface and to cipher the data of the mobile device under attack. In this paper we propose an approach to model an Android application in terms of timed automaton by considering system call traces i.e., performing a dynamic analysis. We obtain encouraging results in the experimental analysis we performed exploiting real-world  (ransomware and legitimate) Android applications
    • …
    corecore