21,799 research outputs found

    An experimental Study using ACSL and Frama-C to formulate and verify Low-Level Requirements from a DO-178C compliant Avionics Project

    Full text link
    Safety critical avionics software is a natural application area for formal verification. This is reflected in the formal method's inclusion into the certification guideline DO-178C and its formal methods supplement DO-333. Airbus and Dassault-Aviation, for example, have conducted studies in using formal verification. A large German national research project, Verisoft XT, also examined the application of formal methods in the avionics domain. However, formal methods are not yet mainstream, and it is questionable if formal verification, especially formal deduction, can be integrated into the software development processes of a resource constrained small or medium enterprise (SME). ESG, a Munich based medium sized company, has conducted a small experimental study on the application of formal verification on a small portion of a real avionics project. The low level specification of a software function was formalized with ACSL, and the corresponding source code was partially verified using Frama-C and the WP plugin, with Alt-Ergo as automated prover. We established a couple of criteria which a method should meet to be fit for purpose for industrial use in SME, and evaluated these criteria with the experience gathered by using ACSL with Frama-C on a real world example. The paper reports on the results of this study but also highlights some issues regarding the method in general which, in our view, will typically arise when using the method in the domain of embedded real-time programming.Comment: In Proceedings F-IDE 2015, arXiv:1508.0338

    Computing Presuppositions by Contextual Reasoning

    Full text link
    This paper describes how automated deduction methods for natural language processing can be applied more efficiently by encoding context in a more elaborate way. Our work is based on formal approaches to context, and we provide a tableau calculus for contextual reasoning. This is explained by considering an example from the problem area of presupposition projection.Comment: 5 page

    Deriving Safety Cases from Machine-Generated Proofs

    Get PDF
    Proofs provide detailed justification for the validity of claims and are widely used in formal software development methods. However, they are often complex and difficult to understand, because they use machine-oriented formalisms; they may also be based on assumptions that are not justified. This causes concerns about the trustworthiness of using formal proofs as arguments in safety-critical applications. Here, we present an approach to develop safety cases that correspond to formal proofs found by automated theorem provers and reveal the underlying argumentation structure and top-level assumptions. We concentrate on natural deduction proofs and show how to construct the safety cases by covering the proof tree with corresponding safety case fragments

    Tableaux Modulo Theories Using Superdeduction

    Full text link
    We propose a method that allows us to develop tableaux modulo theories using the principles of superdeduction, among which the theory is used to enrich the deduction system with new deduction rules. This method is presented in the framework of the Zenon automated theorem prover, and is applied to the set theory of the B method. This allows us to provide another prover to Atelier B, which can be used to verify B proof rules in particular. We also propose some benchmarks, in which this prover is able to automatically verify a part of the rules coming from the database maintained by Siemens IC-MOL. Finally, we describe another extension of Zenon with superdeduction, which is able to deal with any first order theory, and provide a benchmark coming from the TPTP library, which contains a large set of first order problems.Comment: arXiv admin note: substantial text overlap with arXiv:1501.0117

    Deduction modulo theory

    Get PDF
    This paper is a survey on Deduction modulo theor
    corecore