392 research outputs found

    Deliverable JRA1.1: Evaluation of current network control and management planes for multi-domain network infrastructure

    Get PDF
    This deliverable includes a compilation and evaluation of available control and management architectures and protocols applicable to a multilayer infrastructure in a multi-domain Virtual Network environment.The scope of this deliverable is mainly focused on the virtualisation of the resources within a network and at processing nodes. The virtualization of the FEDERICA infrastructure allows the provisioning of its available resources to users by means of FEDERICA slices. A slice is seen by the user as a real physical network under his/her domain, however it maps to a logical partition (a virtual instance) of the physical FEDERICA resources. A slice is built to exhibit to the highest degree all the principles applicable to a physical network (isolation, reproducibility, manageability, ...). Currently, there are no standard definitions available for network virtualization or its associated architectures. Therefore, this deliverable proposes the Virtual Network layer architecture and evaluates a set of Management- and Control Planes that can be used for the partitioning and virtualization of the FEDERICA network resources. This evaluation has been performed taking into account an initial set of FEDERICA requirements; a possible extension of the selected tools will be evaluated in future deliverables. The studies described in this deliverable define the virtual architecture of the FEDERICA infrastructure. During this activity, the need has been recognised to establish a new set of basic definitions (taxonomy) for the building blocks that compose the so-called slice, i.e. the virtual network instantiation (which is virtual with regard to the abstracted view made of the building blocks of the FEDERICA infrastructure) and its architectural plane representation. These definitions will be established as a common nomenclature for the FEDERICA project. Other important aspects when defining a new architecture are the user requirements. It is crucial that the resulting architecture fits the demands that users may have. Since this deliverable has been produced at the same time as the contact process with users, made by the project activities related to the Use Case definitions, JRA1 has proposed a set of basic Use Cases to be considered as starting point for its internal studies. When researchers want to experiment with their developments, they need not only network resources on their slices, but also a slice of the processing resources. These processing slice resources are understood as virtual machine instances that users can use to make them behave as software routers or end nodes, on which to download the software protocols or applications they have produced and want to assess in a realistic environment. Hence, this deliverable also studies the APIs of several virtual machine management software products in order to identify which best suits FEDERICA’s needs.Postprint (published version

    Cross-Site Virtual Network in Cloud and Fog Computing

    Get PDF
    The interconnection of the different geographically dispersed cloud and fog infrastructures is a key issue for the development of the fog technology. Although most existing cloud providers and platforms offer some kind of connectivity services to allow the interconnection with external networks, these services exhibit many limitations and they are not suitable for fog computing environments. In this work we present a hybrid fog and cloud interconnection framework, which allows the automatic provision of cross-site virtual networks to interconnect geographically distributed cloud and fog infrastructures. This framework provides a scalable and multi-tenant solution, and a simple and generic interface for instantiating, configuring and deploying Layer 2 and Layer 3 overlay networks across heterogeneous fog and cloud platforms, with abstraction from the underlying cloud/fog technologies and network virtualization technologies

    Mobile Oriented Future Internet (MOFI)

    Get PDF
    This Special Issue consists of seven papers that discuss how to enhance mobility management and its associated performance in the mobile-oriented future Internet (MOFI) environment. The first two papers deal with the architectural design and experimentation of mobility management schemes, in which new schemes are proposed and real-world testbed experimentations are performed. The subsequent three papers focus on the use of software-defined networks (SDN) for effective service provisioning in the MOFI environment, together with real-world practices and testbed experimentations. The remaining two papers discuss the network engineering issues in newly emerging mobile networks, such as flying ad-hoc networks (FANET) and connected vehicular networks

    Effectiveness of security tools to anomalies on tunneled traffic

    Get PDF
    Tunneling mechanism has been proven as an option to link the communication between IPv6 networks and IPv4 environments without incurring the high costs of upgrading equipment. However, this mechanism has reduced the network performance and downgrade the level of security if compared to the native IPv6 network. The Transition Mechanism has also become a covert channel for spreading threats without being acknowledged by the network security tools. Even though the issue has been raised in the set of IETF rules, still they do not provide any recommendation to overcome the problem. Based on this reason, this study explored the effectiveness of conventional network security tools to detect any anomalies occurring on a tunneling mechanism especially against packet flooding attack in IPv6 tunneling. In order to achieve this objective, a testbed that has been deployed with conventional firewall and IDS is used to simulate the IPv6 to IPv4 tunneling mechanism, several network attacks are then launched and the network traffic is then captured to be analyzed. The result shows that the firewall with the default settings had blocked all the tunneling packets, while the firewall and IDS with the default rule of set had performed well in IPv4 but not in the IPv6 tunnel

    Counting 6to4 relay routers

    Full text link

    Steering hyper-giants' traffic at scale

    Get PDF
    Large content providers, known as hyper-giants, are responsible for sending the majority of the content traffic to consumers. These hyper-giants operate highly distributed infrastructures to cope with the ever-increasing demand for online content. To achieve 40 commercial-grade performance of Web applications, enhanced end-user experience, improved reliability, and scaled network capacity, hyper-giants are increasingly interconnecting with eyeball networks at multiple locations. This poses new challenges for both (1) the eyeball networks having to perform complex inbound traffic engineering, and (2) hyper-giants having to map end-user requests to appropriate servers. We report on our multi-year experience in designing, building, rolling-out, and operating the first-ever large scale system, the Flow Director, which enables automated cooperation between one of the largest eyeball networks and a leading hyper-giant. We use empirical data collected at the eyeball network to evaluate its impact over two years of operation. We find very high compliance of the hyper-giant to the Flow Director’s recommendations, resulting in (1) close to optimal user-server mapping, and (2) 15% reduction of the hyper-giant’s traffic overhead on the ISP’s long-haul links, i.e., benefits for both parties and end-users alike.EC/H2020/679158/EU/Resolving the Tussle in the Internet: Mapping, Architecture, and Policy Making/ResolutioNe

    Planning the introduction of IPv6 in NATO, Journal of Telecommunications and Information Technology, 2006, nr 3

    Get PDF
    The NATO wide area network provides secure IP services to NATO commands and agencies, and offers information exchange gateways to nations and coalition operations. The IP services support the NATO-wide deployment of core automated information systems (AIS), and the placement of specific functional area services (e.g., intelligence, logistics, C2IS for the services, etc.) at commands. To maintain and improve interoperability within NATO and with partners, NATO will transition from version four of the Internet Protocol (IPv4) to version six (IPv6). The transition to IPv6 will involve the IP network, the information exchange gateways, the core AIS, the functional area services, and the supporting CIS infrastructure. The IPv6 naming and addressing plan being developed supports the NATO command structure and interoperability with NATO partners. The critical issue in the planning process is to support the incremental introduction of IPv6 whilst maintaining network security and reliable interworking with existing IPv4 systems and limiting increases in operations and maintenance costs. To minimise costs and maximise effectiveness NATO is planning the transition in a timescale that is commensurate with commercial adoption in NATO countries, the technology refreshment points for major systems, and the availability of IPv6 security components. New NATO projects will prepare for the transition by detailing their IPv6 upgrade path and procuring dual stack (IPv4 and IPv6) equipment. NATO will develop and adopt standardised approaches for IPv6 protocols and network design

    IPv6: a new security challenge

    Get PDF
    Tese de mestrado em Segurança Informática, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2011O Protocolo de Internet versão 6 (IPv6) foi desenvolvido com o intuito de resolver alguns dos problemas não endereçados pelo seu antecessor, o Protocolo de Internet versão 4 (IPv4), nomeadamente questões relacionadas com segurança e com o espaço de endereçamento disponível. São muitos os que na última década têm desenvolvido estudos sobre os investimentos necessários à sua adoção e sobre qual o momento certo para que o mesmo seja adotado por todos os players no mercado. Recentemente, o problema da extinção de endereçamentos públicos a ser disponibilizado pelas diversas Region Internet registry – RIRs - despertou o conjunto de entidades envolvidas para que se agilizasse o processo de migração do IPv4 para o IPv6. Ao contrário do IPv4, esta nova versão considera a segurança como um objetivo fundamental na sua implementação, nesse sentido é recomendado o uso do protocolo IPsec ao nível da camada de rede. No entanto, e devido à imaturidade do protocolo e à complexidade que este período de transição comporta, existem inúmeras implicações de segurança que devem ser consideradas neste período de migração. O objetivo principal deste trabalho é definir um conjunto de boas práticas no âmbito da segurança na implementação do IPv6 que possa ser utilizado pelos administradores de redes de dados e pelas equipas de segurança dos diversos players no mercado. Nesta fase de transição, é de todo útil e conveniente contribuir de forma eficiente na interpretação dos pontos fortes deste novo protocolo assim como nas vulnerabilidades a ele associadas.IPv6 was developed to address the exhaustion of IPv4 addresses, but has not yet seen global deployment. Recent trends are now finally changing this picture and IPv6 is expected to take off soon. Contrary to the original, this new version of the Internet Protocol has security as a design goal, for example with its mandatory support for network layer security. However, due to the immaturity of the protocol and the complexity of the transition period, there are several security implications that have to be considered when deploying IPv6. In this project, our goal is to define a set of best practices for IPv6 Security that could be used by IT staff and network administrators within an Internet Service Provider. To this end, an assessment of some of the available security techniques for IPv6 will be made by means of a set of laboratory experiments using real equipment from an Internet Service Provider in Portugal. As the transition for IPv6 seems inevitable this work can help ISPs in understanding the threats that exist in IPv6 networks and some of the prophylactic measures available, by offering recommendations to protect internal as well as customers’ networks
    corecore