1,376 research outputs found

    Volcanic Hot-Spot Detection Using SENTINEL-2: A Comparison with MODIS−MIROVA Thermal Data Series

    Get PDF
    In the satellite thermal remote sensing, the new generation of sensors with high-spatial resolution SWIR data open the door to an improved constraining of thermal phenomena related to volcanic processes, with strong implications for monitoring applications. In this paper, we describe a new hot-spot detection algorithm developed for SENTINEL-2/MSI data that combines spectral indices on the SWIR bands 8a-11-12 (with a 20-meter resolution) with a spatial and statistical analysis on clusters of alerted pixels. The algorithm is able to detect hot-spot-contaminated pixels (S2Pix) in a wide range of environments and for several types of volcanic activities, showing high accuracy performances of about 1% and 94% in averaged omission and commission rates, respectively, underlining a strong reliability on a global scale. The S2-derived thermal trends, retrieved at eight key-case volcanoes, are then compared with the Volcanic Radiative Power (VRP) derived from MODIS (Moderate Resolution Imaging Spectroradiometer) and processed by the MIROVA (Middle InfraRed Observation of Volcanic Activity) system during an almost four-year-long period, January 2016 to October 2019. The presented data indicate an overall excellent correlation between the two thermal signals, enhancing the higher sensitivity of SENTINEL-2 to detect subtle, low-temperature thermal signals. Moreover, for each case we explore the specific relationship between S2Pix and VRP showing how different volcanic processes (i.e., lava flows, domes, lakes and open-vent activity) produce a distinct pattern in terms of size and intensity of the thermal anomaly. These promising results indicate how the algorithm here presented could be applicable for volcanic monitoring purposes and integrated into operational systems. Moreover, the combination of high-resolution (S2/MSI) and moderate-resolution (MODIS) thermal timeseries constitutes a breakthrough for future multi-sensor hot-spot detection systems, with increased monitoring capabilities that are useful for communities which interact with active volcanoes

    Evaluation of Landsat-8 and Sentinel-2A Aerosol Optical Depth Retrievals Across Chinese Cities and Implications for Medium Spatial Resolution Urban Aerosol Monitoring

    Get PDF
    In urban environments, aerosol distributions may change rapidly due to building and transport infrastructure and human population density variations. The recent availability of medium resolution Landsat-8 and Sentinel-2 satellite data provide the opportunity for aerosol optical depth (AOD) estimation at higher spatial resolution than provided by other satellites. AOD retrieved from 30 m Landsat-8 and 10 m Sentinel-2A data using the Land Surface Reflectance Code (LaSRC) were compared with coincident ground-based Aerosol Robotic Network (AERONET) Version 3 AOD data for 20 Chinese cities in 2016. Stringent selection criteria were used to select contemporaneous data; only satellite and AERONET data acquired within 10 min were considered. The average satellite retrieved AOD over a 1470 m1470 m window centered on each AERONET site was derived to capture fine scale urban AOD variations. AERONET Level 1.5 (cloud-screened) and Level 2.0 (cloud-screened and also quality assured) data were considered. For the 20 urban AERONET sites in 2016 there were 106 (Level 1.5) and 67 (Level 2.0) Landsat-8 AERONET AOD contemporaneous data pairs, and 118 (Level 1.5) and 89 (Level 2.0) Sentinel-2A AOD data pairs. The greatest AOD values (>1.5) occurred in Beijing, suggesting that the Chinese capital was one of the most polluted cities in China in 2016. The LaSRC Landsat-8 and Sentinel-2A AOD retrievals agreed well with the AERONET AOD data (linear regression slopes > 0.96; coefficient of determination r(exp 2) > 0.90; root mean square deviation < 0.175) and demonstrate that the LaSRC is an effective and applicable medium resolution AOD retrieval algorithm over urban environments. The Sentinel-2A AOD retrievals had better accuracy than the Landsat-8 AOD retrievals, which is consistent with previously published research.The implications of the research and the potential for urban aerosol monitoring by combining the freely available Landsat-8 and Sentinel-2 satellite data are discussed

    Cloud Detection And Information Cloning Technique For Multi Temporal Satellite Images

    Get PDF
    Tez (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2017Thesis (Ph.D.) -- İstanbul Technical University, Institute of Science and Technology, 2017Uzaktan algılanmış uydu görüntülerinde atmosfer etkilerinden kaynaklı olarak ortaya çıkan bölgesel bulutlar ve bu bulutların gölgeleri, yapılan çalışmalarda problem oluşturan temel gürültü kaynaklarındandır. Değişim analizi, NDVI hesaplama gibi önemli dijital işlemlerde bulut ve gölge bölgeleri, genel olarak yanıltıcı sonuçlar veren bölgeler olduğundan dijital işlemler çoğu zaman bu alanlar maskelenerek gerçekleştirilmektedir. Bu problem birçok çalışmada aynı bölgeden farklı zamanlarda elde edilmiş uydu görüntüleri ile mozaikleme yapılarak aşılmıştır. Ancak, mozaikleme sırasında oluşan spektral ve dokusal bozulmalar çalışmaları olumsuz etkilemektedir. Görüntünün çekilme anına bir daha dönülemeyeceğinden, bulutsuz bir görüntü elde etmek önemli bir süreç haline gelmektedir. Google Earth gibi sık kullanılan harita araçları aynı bölgeye ait çekilmiş birçok görüntü kullanarak bu görüntülerin ortalamalarından bulutsuz mozaikler elde ederek kullanıcılara sunmaktadır. Bu çalışmada bulutlu görüntüler çok zamanlı bulutsuz görüntülerden klonlama yapılarak bulutsuz hale getirilecektir. Diğer benzer çalışmalara ek olarak, klonlama süreci bir fotoğraf düzenleme işleminden öte görüntünün spektral özellikleri kullanılarak gerçekleştirilerek en yakın tarih ve spektral benzerlik göz önünde bulundurularak bulutsuz görüntü elde edilecektir. Üretilen bulutsuz görüntüde oluşan kenar bozulma etkileri çeşitli filtreler ile azaltılacaktır. Geliştirilen yöntem farklı zamanlarda çekilmiş Landsat-8 uydu görüntüleri ile test edilmiştir. Görüntüde bulunan bulutların belirlenmesi, bulut klonlama işleminin gerçekleştirilmesi için ilk aşama ve doğruluğu direkt olarak klonlama doğruluğu etkileyen bir süreçtir. Bulutların oluşturduğu parlaklık ve gölgelerinin oluşturduğu kararmalar birçok veri analizini olumsuz etkilemektedir. Bu etkiler, atmosferik düzeltmede oluşacak zorluklar, NDVI değerlerinin yükselmesi, sınıflandırmadaki hatalar ve değişim analizinin yanlış gerçekleştirilmesi şeklinde olabilir. Tüm bu etkilerin doğrultusunda, uzaktan algılama görüntülerinde bulutlar ve gölgeleri önemli bir gürültü kaynağı olduğundan bunların dijital işlemlerden önceki ilk aşamada belirlenmesi önem taşımaktadır. Bu çalışmada, Landsat-8 görüntüleri kullanılarak ve mevcut ısıl bantların da yardımıyla, bulut ve gölgelerinin belirlenmesi için bölütleme tabanlı bir kural dizisi ile uygulanan bir yöntem önerilmiş ve test edilmiştir. Çalışmaya temel olan bulut belirleme algoritması, ACCA ve Fmask algoritmalarının geliştirilmiş, sadeleştirilmiş, otomatize edilmiş ve bölütleme tabanlı uyarlanmış bir sürümü olarak değerlendirilebilir . Bu yöntem sayesinde, spektral özellikler ve geometrik özellikler bir arada kullanılarak Landsat 8 görüntülerinden bulut ve bulut gölgeleri belirlenmiştir. Spektral ve geometrik özelliklerin yanı sıra Landsat ısıl bant verileri ile, bulut-gölge ve soğuk yüzey (kar, buz) ayırımı güçlendirilmiştir. Komşuluk ilişkileri kullanılarak, belirlenen bulut alanları etrafındaki bulut gölgelerinin belirleme doğruluğu arttırılmıştır. Geliştirilen algoritma, dört farklı bölge için farklı zamanlarda çekilmiş Landsat görüntüleri üzerinde test edilerek değerlendirilmiştir. Bulut belirleme algoritmasında temel olarak Landsat 8 görüntülerinin OLI ve ısıl bantları kullanılmaktadır. Landsat-8 verileri, DN değerler olarak işlenmemiş halde sağlanmaktadır. Bu veriler, Landsat verileri ile birlikte gelen meta veri dosyasında (MTL) verilen oranlama katsayıları ile atmosfer üstü yansıtım değerlerine ve radyans değerlerine dönüştürülebilmektedir. Böylece veriler fiziksel anlamı olan birimlere dönüştürülmüş olur. Meta veri dosyasında sağlanan ısıl bant katsayıları ile ısıl bant verileri, parlaklık sıcaklığı bilgisine dönüştürülebilmektedir. OLI bantları atmosfer üstü yansıtım değerlerine (ToA), ısıl bantlar ise parlaklık sıcaklığına dönüştürülerek algoritmada kullanılmıştır. Yansıtım değerlerine dönüştürülen görüntülerde bulut alanlarının belirlenmesi için öncelikle bölütleme algoritması ile görüntü süper-piksellere ayrılmış ve kural tabanlı bir sınıflandırma dizisi uygulanarak bulut alanları görüntü üzerinden belirlenmiştir. Bulut alanlarının belirlenmesinden sonra, spektral testler ve bulut alanlarının komşuluk ilişkileri değerlendirilerek bulut gölgesi alanları da belirlenmiştir. Süper pikseller, pikselleri anlamlı gruplar halinde birleştirerek, piksel grupları oluşturmak için kullanılmaktadır. Görüntüdeki aynı bilgiye sahip olan piksellerin birleştirilmesi ile görüntü işleme amaçlı işlemlerin hızı da yüksek oranda artmaktadır. K-ortalamalar (K-means) yönteminin mekânsal özelliklerini de kullanan bir uyarlamasını temel alarak süper pikselleri üreten SLIC algoritması da bu amaçla kullanılan etkin yöntemlerden biridir. Bulut süper piksellerinin üretilmesinde SLIC yöntemi kullanılmıştır. Görüntülerden bulut alanlarının belirlenmesi için, bulutların spektral karakteristiğinin belirlenmesi ile işleme başlanmıştır. Görüntü üzerinden toplanan bulut noktalarının spektral imzaları karşılaştırılmıştır. Algoritma bu imzalar temel alınarak geliştirilmiştir. Bulut özelliklerine benzer şekilde, bulut gölgesi alanlarının sınıflandırılmasında da, görüntü üzerinden toplanan bulut noktalarının spektral imzalarının yorumlanmasını temel alan bir yöntem ile ısıl bandı devre dışı bırakan bir bant oranlama indeksi geliştirilmiştir. Bu indeks ile gölge alanlarının değeri diğer arazi örtüsü özelliklerinden keskin bir şekilde ayrıldığından eşik değeri belirlenmesi dinamik olarak gerçekleştirilebilmektedir. İkinci olarak, farklı gölge alanlarının, bulut gölgeleri ile karışmasını önlemek amacıyla görüntü özniteliklerinden olan güneş azimut açısı kullanılarak tüm bulut bölgelerinin bu açı ile doğru orantılı şekilde belli bir uzaklıkta izdüşümü alınmıştır. Bu izdüşüm alanlar, potansiyel gölge alanlarını ifade etmektedir. Gölge alan belirleme indeksi sonucu ile bu izdüşüm alanların kesişimi final gölge bölgelerinin sınıflandırılmasında kullanılmıştır Bulut ve gölgelerinin belirlenmesi, uzaktan algılamada uzun zamandır üzerinde çalışılan ve birçok yöntemin geliştirildiği bir konudur. Bu yöntemler kimi zaman yeterli doğrulukta sonuçlar verirken, kimi zaman da yeterli doğruluğu sağlayamamaktadır. Piksel tabanlı yöntemlerin yanı sıra, görüntüyü süper-piksellere ayıran bölütleme tabanlı yöntemlerin bulut ve gölge belirlemede kullanılması yeni bir konudur. Bu şekilde, görüntü, homojen özellikler sergileyen piksel gruplarına ayrılarak, hem hesaplama gücü azaltılmakta, hem de nesne tabanlı bir yaklaşım sergilendiğinden, sınıflandırılması hedeflenen özellikler geometrik karakteristikleri bakımından etkin bir şekilde görüntü üzerinden elde edilebilmektedir. Bu çalışmada geliştirilen bulut ve gölge belirleme algoritmaları ile bölütleme tabanlı bir yaklaşım bu kapsamda uygulanmıştır. İlk aşamada elde edilen süper-piksellerin doğruluğu sınıflandırma doğruluğunu doğrudan etkilemektedir. Bu nedenle küçük bir ölçek parametresi seçilerek süper-piksellerin boyutları küçük tutulmuş ve piksel gruplamaları homojen tutularak, heterojen süper-piksellerin oluşması olasılığı azaltılmıştır. Bulut ve gölge gibi nesneler, parlak ve koyu yansıtım değerleri nedeniyle görüntü üzerindeki spektral karakteristikleri belirgin bir şekilde oluşan özelliklerdir. Bu bilgiler esas alınarak SLIC algoritması ile etkin bir bölütleme uygulanarak bulut ve gölge alanları süper-piksellere ayrılmıştır. Spektral tabanlı bir yaklaşımla geliştirilen indeksler ile kural seti şeklinde bir yapı kurularak; parlaklık sıcaklığı, güneş açısı, NDSI, NDWI gibi özellikler de sınıflandırma kural setine eklenerek, çok kriterli bir yapıda bulut ve gölge alanları görüntü üzerinden belirlenmiştir. Burada yeni bir yaklaşım olan bulut-gölge izdüşümü yaklaşımı ile bulut ve gölge arasındaki geometrik bağıntı kullanılarak gölge sınıflandırması doğruluğu arttırılmıştır. Tüm bu sonuçlar farklı bölgelerden alınmış görüntüler üzerindeki aynı parametreler ile koşturularak, yöntemin transfer edilebilirliği test edilmiştir. ACCA, Fmask gibi algoritmaların yanında, burada geliştirilen algoritma, transfer edilebilirliği, süper-piksel tabanlı olması sebebiyle getirdiği işlem kolaylığı ve basitleştirilmiş işlem adımları ile kullanışlılığını kanıtlamıştır. Bulut ve gölge alanlarının tespitinden sonra klonlama işlemine altlık oluşturacak bulut maskeleri elde edilmiştir. Bulut alanlarının, bulutsuz görüntülerden hangisi seçilerek klonlanılmasına görüntüler arasında yapılan spektral benzerlik testleri ile karar verilmiştir. Tüm bu görüntülerin bulutlu görüntüye olan korelesyonları hesaplanarak korelasyonu en yüksek olan görüntü bilgi aktarımı için kullanılmıştır. Görüntülerin klonlanmasında, bulutlu görüntünün çekildiği tarihe en yakın 3 aylık görüntüler girdi olarak alınmıştır. Tespit edilen bulut alanları ayrı ayrı analiz edilerek, öncelikle seçilen alana yakın tarihli görüntülerde aynı bölgenin bulutsuz olup olmadığı görüntülerin kesişimleri alınarak test edilmiştir. Bu testin sonrasında bulutsuz görüntüler ile bulutlu görüntü arasında korelasyonu en yüksek görüntüden taşırma algoritması ile (Flood Fill) bilgi aktarımı yapılarak bulutsuz görüntü elde edilmiştir Görüntülerin klonlanmasından sonra oluşan kenar bozulma etkilerinin düzeltilmesi için, klonlanan bölge sınırlarına ortalama filtresi (mean filter, averaging filter) uygulanmıştır. Görüntülerin klonlanmasının ardından, üretilen bulutsuz görüntülerin yakın zaman ait bulutsuz görüntülere olan benzerliği, Yapısal Benzerlik İndeksi Yöntemi (YBIY) (Structural Similarity Index) ile test edilmiştir. YBIY iki resim arasındaki benzerliğin ölçülmesi için geliştirilmiş, Karesel Ortalama Hata’nın (KOH) geliştirilmiş bir sürümü olan ve sık kullanılan bir yöntemdir. Bu yöntem, karşılaştırılan görüntülerden birisini mutlak doğru olarak kabul ederek, diğer görüntünün bu görüntüden sapmasını tespit etmektedir. Görüntünün kontrast ve spektral özelliklerini yanı sıra, yapısal bozulmalarını da hesaplamaya kattığından çalışma için uygun yöntem olarak belirlenmiş ve uygulanmıştır. Bulutlu görüntülerdeki bulutların giderilmesi uzaktan algılama disiplini üzerinde çalışanların uzun zamandır çalıştığı bir konudur. Sis etkisinin giderilmesi için bazı spektral yöntemler geliştirilmiş olsa da, geçirimsiz bulutların giderilmesi ancak farklı zamanlı uydu görüntülerinden bilgi aktarımı ile gerçekleşmektedir. Bu çalışmada, yapılan diğer çalışmalarda kazanılan bulut belirleme başarımının sonrasında bu bilgi kullanılarak görüntüde bulunan bulutların, aynı bölgeden çekilmiş farklı zamanlı görüntülerden bilgi aktarımı ile bulutsuz hale getirilmesi sağlanmıştır. Diğer bulutsuz görüntü elde etme yöntemlerinin yanı sıra, bulutlu alanların bulutsuz görüntülerden klonlanması sırasında, görüntülerin spektral ve yapısal özelliklerini korumak ön planda tutulmuştur. Farklı görüntü benzerlik ve görüntü kalitesi yöntemleri kullanılarak sadece görsellik önde tutulmadan spektral ve yapısal bilgiyi de koruyan bir yöntem geliştirilmiştir.One of the main sources of noises in remote sensing satellite images are regional clouds and shadows of these clouds caused by atmospheric conditions. In many studies, these clouds and shadows are masked with multitemporal images taken from the same area to decrease effects of misclassification and deficiency in different image processing techniques, such as change detection and NDVI calculation. This problem is surpassed in many studies by mosaicking with different images obtained from different acquisition dates of the same region. The main step of all these studies that cover cloud cloning or cloud detection is the detection of clouds from a satellite image. In this study, clouds and shadow patches are classified by using a spectral feature based rule set created after segmentation process of Landsat 8 image. Not only spectral characteristics but also structural parameters like pattern, area and dimension are used to detect clouds and shadows. Information of cloud projection is used to strengthen cloud shadow classification. Rule set of classification is developed within a transferable approach to reach a scene independent solution. Results are tested with different satellite images from different areas to test transferability and compared to other state-of art methods in the literature. Detection of clouds and cloud shadows features correctly is the main step of cloning procedure to create cloudless image from multitemporal image dataset. Multitemporal image dataset is used to find best image to clone cloud image. Choosing best image for cloning process is an important step for reliable cloning. Statistical and seasonal similarity tests are used to find best image to clone cloud covered image. Vector intersections are used to find cloudless images between multitemporal dataset. Flood Fill method is used to create cloudless image from cloud covered image by using information extraction from cloudless images in dataset. Accuracy of cloning process is tested by using SSIM index to find structural and spectral similarity to cloudless image. All cloning results are tested with different image from different regions to check transferability of study. This study can be regarded as a scientific approach to create cloudless image mosaics for each kind of application. Method in this thesis is a scientific approach to well-known methods of famous cloudless mosaic generation methods of Google, Mapbox Co. etc. for creation of visually good-looking base maps for web maps.DoktoraPh.D

    Remote Sensing of Environment: Current status of Landsat program, science, and applications

    Get PDF
    Formal planning and development of what became the first Landsat satellite commenced over 50 years ago in 1967. Now, having collected earth observation data for well over four decades since the 1972 launch of Landsat- 1, the Landsat program is increasingly complex and vibrant. Critical programmatic elements are ensuring the continuity of high quality measurements for scientific and operational investigations, including ground systems, acquisition planning, data archiving and management, and provision of analysis ready data products. Free and open access to archival and new imagery has resulted in a myriad of innovative applications and novel scientific insights. The planning of future compatible satellites in the Landsat series, which maintain continuity while incorporating technological advancements, has resulted in an increased operational use of Landsat data. Governments and international agencies, among others, can now build an expectation of Landsat data into a given operational data stream. International programs and conventions (e.g., deforestation monitoring, climate change mitigation) are empowered by access to systematically collected and calibrated data with expected future continuity further contributing to the existing multi-decadal record. The increased breadth and depth of Landsat science and applications have accelerated following the launch of Landsat-8, with significant improvements in data quality. Herein, we describe the programmatic developments and institutional context for the Landsat program and the unique ability of Landsat to meet the needs of national and international programs. We then present the key trends in Landsat science that underpin many of the recent scientific and application developments and followup with more detailed thematically organized summaries. The historical context offered by archival imagery combined with new imagery allows for the development of time series algorithms that can produce information on trends and dynamics. Landsat-8 has figured prominently in these recent developments, as has the improved understanding and calibration of historical data. Following the communication of the state of Landsat science, an outlook for future launches and envisioned programmatic developments are presented. Increased linkages between satellite programs are also made possible through an expectation of future mission continuity, such as developing a virtual constellation with Sentinel-2. Successful science and applications developments create a positive feedback loop—justifying and encouraging current and future programmatic support for Landsat

    A Quantitative Assessment of Forest Cover Change in the Moulouya River Watershed (Morocco) by the Integration of a Subpixel-Based and Object-Based Analysis of Landsat Data

    Get PDF
    A quantitative assessment of forest cover change in the Moulouya River watershed (Morocco) was carried out by means of an innovative approach from atmospherically corrected reflectance Landsat images corresponding to 1984 (Landsat 5 Thematic Mapper) and 2013 (Landsat 8 Operational Land Imager). An object-based image analysis (OBIA) was undertaken to classify segmented objects as forested or non-forested within the 2013 Landsat orthomosaic. A Random Forest classifier was applied to a set of training data based on a features vector composed of different types of object features such as vegetation indices, mean spectral values and pixel-based fractional cover derived from probabilistic spectral mixture analysis). The very high spatial resolution image data of Google Earth 2013 were employed to train/validate the Random Forest classifier, ranking the NDVI vegetation index and the corresponding pixel-based percentages of photosynthetic vegetation and bare soil as the most statistically significant object features to extract forested and non-forested areas. Regarding classification accuracy, an overall accuracy of 92.34% was achieved. The previously developed classification scheme was applied to the 1984 Landsat data to extract the forest cover change between 1984 and 2013, showing a slight net increase of 5.3% (ca. 8800 ha) in forested areas for the whole region

    Automated classification of heat sources detected using SWIR remote sensing

    Get PDF
    Abstract The potential of shortwave infrared (SWIR) remote sensing to detect hotspots has been investigated using satellite data for decades. The hotspots detected by satellite SWIR sensors include very high-temperature heat sources such as wildfires, volcanoes, industrial activity, or open burning. This study proposes an automated classification method of heat source detected utilizing Landsat 8 and Sentinel-2 data. We created training data of heat sources via visual inspection of hotspots detected by Landsat 8. A scheme to classify heat sources for daytime data was developed by combining classification methods based on a Convolutional Neural Network (CNN) algorithm utilizing spatial features and a decision tree algorithm based on thematic land-cover information and our time series detection record. Validation work using 10,959 classification results corresponding to hotspots acquired from May 2017 to July 2019 indicated that the two classification results were in 79.7% agreement. For hotspots where the two classification schemes agreed, the classification was 97.9% accurate. Even when the results of the two classification schemes conflicted, either was correct in 73% of the samples. To improve the accuracy, the heat source category was re-allocated to the most probable category corresponding to the combination of the results from the two methods. Integrating the two approaches achieved an overall accuracy of 92.8%. In contrast, the overall accuracy for heat source classification during nighttime reached 79.3% because only the decision tree-based classification was applicable to limited available data. Comparison with the Visible Infrared Imaging Radiometer Suite (VIIRS) fire product revealed that, despite the limited data acquisition frequency of Landsat 8, regional tendencies in hotspot occurrence were qualitatively appropriate for an annual period on a global scale

    Automated Satellite-Based Landslide Identification Product for Nepal

    Get PDF
    Landslide event inventories are a vital resource for landslide susceptibility and forecasting applications. However, landslide inventories can vary in accuracy, availability, and timeliness as a result of varying detection methods, reporting, and data availability. This study presents an approach to use publicly available satellite data and open source software to automate a landslide detection process called the Sudden Landslide Identification Product (SLIP). SLIP utilizes optical data from the Landsat 8 OLI sensor, elevation data from the Shuttle Radar Topography Mission (SRTM), and precipitation data from the Global Precipitation Measurement (GPM) mission to create a reproducible and spatially customizable landslide identification product. The SLIP software applies change detection algorithms to identify areas of new bare-earth exposures that may be landslide events. The study also presents a precipitation monitoring tool that runs alongside SLIP called the Detecting Real-time Increased Precipitation (DRIP) model that helps identify the timing of potential landslide events detected by SLIP. Using SLIP and DRIP together, landslide detection is improved by reducing problems related to accuracy, availability, and timeliness that are prevalent in the state-of-the-art of landslide detection. A case study and validation exercise was performed in Nepal for images acquired between 2014 and 2015. Preliminary validation results suggest 56% model accuracy, with errors of commission often resulting from newly cleared agricultural areas. These results suggest that SLIP is an important first attempt in an automated framework that can be used for medium resolution regional landslide detection, although it requires refinement before being fully realized as an operational tool

    Monitoring Deforestation in Rainforests Using Satellite Data: A Pilot Study from Kalimantan, Indonesia

    Get PDF
    Monitoring large forest areas is presently feasible with satellite remote sensing as opposed to time-consuming and expensive ground surveys as alternative. This study evaluated, for the first time, the potential of using freely available medium resolution (30 m) Landsat time series data for deforestation monitoring in tropical rainforests of Kalimantan, Indonesia, at sub-annual time scales. A simple, generic, data-driven algorithm for deforestation detection based on a consecutive anomalies criterion was proposed. An accuracy assessment in the spatial and the temporal domain was carried out using high-confidence reference sample pixels interpreted with the aid of multi-temporal very high spatial resolution image series. Results showed a promising spatial accuracy, when three consecutive anomalies were required to confirm a deforestation event. Recommendations in tuning the algorithm for different operational use cases were provided within the context of satisfying REDD+ requirements, depending on whether spatial accuracy or temporal accuracy need to be optimized
    corecore