931 research outputs found

    Automated catheter navigation with electromagnetic image guidance

    Get PDF
    This paper describes a novel method of controlling an endoscopic catheter by using an automated catheter tensioning system with the objective of providing clinicians with improved manipulation capabilities within the patient. Catheters are used in many clinical procedures to provide access to the cardiopulmonary system. Control of such catheters is performed manually by the clinicians using a handle, typically actuating a single or opposing set of pull wires. Such catheters are generally actuated in a single plane, requiring the clinician to rotate the catheter handle to navigate the system. The automation system described here allows closed-loop control of a custom bronchial catheter in tandem with an electromagnetic tracking of the catheter tip and image guidance by using a 3D Slicer. An electromechanical drive train applies tension to four pull wires to steer the catheter tip, with the applied force constantly monitored through force sensing load cells. The applied tension is controlled through a PC connected joystick. An electromagnetic sensor embedded in the catheter tip enables constant real-time position tracking, whereas a working channel provides a route for endoscopic instruments. The system is demonstrated and tested in both a breathing lung model and a preclinical animal study. Navigation to predefined targets in the subject's airways by using the joystick while using virtual image guidance and electromagnetic tracking was demonstrated. Average targeting times were 29 and 10 s, respectively, for the breathing lung and live animal studies. This paper presents the first reported remote controlled bronchial working channel catheter utilizing electromagnetic tracking and has many implications for future development in endoscopic and catheter-based procedures

    Towards Image-Guided Pediatric Atrial Septal Defect Repair

    Get PDF
    Congenital heart disease occurs in 107.6 out of 10,000 live births, with Atrial Septal Defects (ASD) accounting for 10\% of these conditions. Historically, ASDs were treated with open heart surgery using cardiopulmonary bypass, allowing a patch to be sewn over the defect. In 1976, King et al. demonstrated use of a transcatheter occlusion procedure, thus reducing the invasiveness of ASD repair. Localization during these catheter based procedures traditionally has relied on bi-plane fluoroscopy; more recently trans-esophageal echocardiography (TEE) and intra-cardiac echocardiography (ICE) have been used to navigate these procedures. Although there is a high success rate using the transcatheter occlusion procedure, fluoroscopy poses radiation dose risk to both patient and clinician. The impact of this dose to the patients is important as many of those undergoing this procedure are children, who have an increased risk associated with radiation exposure. Their longer life expectancy than adults provides a larger window of opportunity for expressing the damaging effects of ionizing radiation. In addition, epidemiologic studies of exposed populations have demonstrated that children are considerably more sensitive to the carcinogenic effects radiation. Image-guided surgery (IGS) uses pre-operative and intra-operative images to guide surgery or an interventional procedure. Central to every IGS system is a software application capable of processing and displaying patient images, registration between multiple coordinate systems, and interfacing with a tool tracking system. We have developed a novel image-guided surgery framework called Kit for Navigation by Image Focused Exploration (KNIFE). This software system serves as the core technology by which a system for reduction of radiation exposure to pediatric patients was developed. The bulk of the initial work in this research endevaour was the development of KNIFE which itself went through countless iterations before arriving at its current state as per the feature requirements established. Secondly, since this work involved the use of captured medical images and their use in an IGS software suite, a brief analysis of the physics behind the images was conducted. Through this aspect of the work, intrinsic parameters (principal point and focal point) of the fluoroscope were quantified using a 3D grid calibration phantom. A second grid phantom was traversed through the fluoroscopic imaging volume of II and flat panel based systems at 2 cm intervals building a scatter field of the volume to demonstrate pincushion and \u27S\u27 distortion in the images. Effects of projection distortion on the images was assessed by measuring the fiducial registration error (FRE) of each point used in two different registration techniques, where both methods utilized ordinary procrustes analysis but the second used a projection matrix built from the fluoroscopes calculated intrinsic parameters. A case study was performed to test whether the projection registration outperforms the rigid transform only. Using the knowledge generated were able to successfully design and complete mock clinical procedures using cardiac phantom models. These mock trials at the beginning of this work used a single point to represent catheter location but this was eventually replaced with a full shape model that offered numerous advantages. At the conclusion of this work a novel protocol for conducting IG ASD procedures was developed. Future work would involve the construction of novel EM tracked tools, phantom models for other vascular diseases and finally clinical integration and use

    Remote Navigation and Contact-Force Control of Radiofrequency Ablation Catheters

    Get PDF
    Atrial fibrillation (AF), the most common and clinically significant heart rhythm disorder, is characterized by rapid and irregular electrical activity in the upper chambers resulting in abnormal contractions. Radiofrequency (RF) cardiac catheter ablation is a minimally invasive curative treatment that aims to electrically correct signal pathways inside the atria to restore normal sinus rhythm. Successful catheter ablation requires the complete and permanent elimination of arrhythmogenic signals by delivering transmural RF ablation lesions contiguously near and around key cardiac structures. These procedures are complex and technically challenging and, even when performed by the most skilled physician, nearly half of patients undergo repeat procedures due to incomplete elimination of the arrhythmogenic pathways. This thesis aims to incorporate innovative design to improve catheter stability and maneuverability through the development of robotic platforms that enable precise placement of reproducibly durable ablation lesions. The first part of this thesis deals with the challenges to lesion delivery imposed by cardiorespiratory motion. One of the main determinants of the delivery of durable and transmural RF lesions is the ability to define and maintain a constant contact force between the catheter tip electrode and cardiac tissue, which is hampered by the presence of cardiorespiratory motion. To address this need, I developed and evaluated a novel catheter contact-force control device. The compact electromechanical add-on tool monitors catheter-tissue contact force in real-time and simultaneously adjusts the position of a force-sensing ablation catheter within a steerable sheath to compensate for the change in contact force. In a series of in vitro and in vivo experiments, the contact-force control device demonstrated an ability to: a) maintain an average force to within 1 gram of a set level; b) reduce contact-force variation to below 5 grams (2-8-fold improvement over manual catheter intervention); c) ensure the catheter tip never lost contact with the tissue and never approached dangerous force levels; and importantly, d) deliver reproducible RF ablation lesions regardless of cardiac tissue motion, which were of the same depth and volume as lesions delivered in the absence of tissue motion. In the second part of the thesis, I describe a novel steerable sheath and catheter robotic navigation system, which incorporates the catheter contact-force controller. The robotic platform enables precise and accurate manipulation of a remote conventional steerable sheath and permits catheter-tissue contact-force control. The robotic navigation system was evaluated in vitro using a phantom that combines stationary and moving targets within an in vitro model representing a beating heart. An electrophysiologist used the robotic system to remotely navigate the sheath and catheter tip to select targets and compared the accuracy of reaching these targets performing the same tasks manually. Robotic intervention resulted in significantly higher accuracy and significantly improved the contact-force profile between the catheter tip and moving tissue-mimicking material. Our studies demonstrate that using available contact-force information within a robotic system can ensure precise and accurate placement of reliably transmural RF ablation lesions. These robotic systems can be valuable tools used to optimize RF lesion delivery techniques and ultimately improve clinical outcomes for AF ablation therapy

    Computer- and robot-assisted Medical Intervention

    Full text link
    Medical robotics includes assistive devices used by the physician in order to make his/her diagnostic or therapeutic practices easier and more efficient. This chapter focuses on such systems. It introduces the general field of Computer-Assisted Medical Interventions, its aims, its different components and describes the place of robots in that context. The evolutions in terms of general design and control paradigms in the development of medical robots are presented and issues specific to that application domain are discussed. A view of existing systems, on-going developments and future trends is given. A case-study is detailed. Other types of robotic help in the medical environment (such as for assisting a handicapped person, for rehabilitation of a patient or for replacement of some damaged/suppressed limbs or organs) are out of the scope of this chapter.Comment: Handbook of Automation, Shimon Nof (Ed.) (2009) 000-00

    A Survey on the Current Status and Future Challenges Towards Objective Skills Assessment in Endovascular Surgery

    Get PDF
    Minimally-invasive endovascular interventions have evolved rapidly over the past decade, facilitated by breakthroughs in medical imaging and sensing, instrumentation and most recently robotics. Catheter based operations are potentially safer and applicable to a wider patient population due to the reduced comorbidity. As a result endovascular surgery has become the preferred treatment option for conditions previously treated with open surgery and as such the number of patients undergoing endovascular interventions is increasing every year. This fact coupled with a proclivity for reduced working hours, results in a requirement for efficient training and assessment of new surgeons, that deviates from the “see one, do one, teach one” model introduced by William Halsted, so that trainees obtain operational expertise in a shorter period. Developing more objective assessment tools based on quantitative metrics is now a recognised need in interventional training and this manuscript reports the current literature for endovascular skills assessment and the associated emerging technologies. A systematic search was performed on PubMed (MEDLINE), Google Scholar, IEEXplore and known journals using the keywords, “endovascular surgery”, “surgical skills”, “endovascular skills”, “surgical training endovascular” and “catheter skills”. Focusing explicitly on endovascular surgical skills, we group related works into three categories based on the metrics used; structured scales and checklists, simulation-based and motion-based metrics. This review highlights the key findings in each category and also provides suggestions for new research opportunities towards fully objective and automated surgical assessment solutions

    Context-aware learning for robot-assisted endovascular catheterization

    Get PDF
    Endovascular intervention has become a mainstream treatment of cardiovascular diseases. However, multiple challenges remain such as unwanted radiation exposures, limited two-dimensional image guidance, insufficient force perception and haptic cues. Fast evolving robot-assisted platforms improve the stability and accuracy of instrument manipulation. The master-slave system also removes radiation to the operator. However, the integration of robotic systems into the current surgical workflow is still debatable since repetitive, easy tasks have little value to be executed by the robotic teleoperation. Current systems offer very low autonomy, potential autonomous features could bring more benefits such as reduced cognitive workloads and human error, safer and more consistent instrument manipulation, ability to incorporate various medical imaging and sensing modalities. This research proposes frameworks for automated catheterisation with different machine learning-based algorithms, includes Learning-from-Demonstration, Reinforcement Learning, and Imitation Learning. Those frameworks focused on integrating context for tasks in the process of skill learning, hence achieving better adaptation to different situations and safer tool-tissue interactions. Furthermore, the autonomous feature was applied to next-generation, MR-safe robotic catheterisation platform. The results provide important insights into improving catheter navigation in the form of autonomous task planning, self-optimization with clinical relevant factors, and motivate the design of intelligent, intuitive, and collaborative robots under non-ionizing image modalities.Open Acces

    The Future of Cardiac Mapping

    Get PDF
    • …
    corecore