2,003 research outputs found

    IoTSan: Fortifying the Safety of IoT Systems

    Full text link
    Today's IoT systems include event-driven smart applications (apps) that interact with sensors and actuators. A problem specific to IoT systems is that buggy apps, unforeseen bad app interactions, or device/communication failures, can cause unsafe and dangerous physical states. Detecting flaws that lead to such states, requires a holistic view of installed apps, component devices, their configurations, and more importantly, how they interact. In this paper, we design IoTSan, a novel practical system that uses model checking as a building block to reveal "interaction-level" flaws by identifying events that can lead the system to unsafe states. In building IoTSan, we design novel techniques tailored to IoT systems, to alleviate the state explosion associated with model checking. IoTSan also automatically translates IoT apps into a format amenable to model checking. Finally, to understand the root cause of a detected vulnerability, we design an attribution mechanism to identify problematic and potentially malicious apps. We evaluate IoTSan on the Samsung SmartThings platform. From 76 manually configured systems, IoTSan detects 147 vulnerabilities. We also evaluate IoTSan with malicious SmartThings apps from a previous effort. IoTSan detects the potential safety violations and also effectively attributes these apps as malicious.Comment: Proc. of the 14th ACM CoNEXT, 201

    Cybersecurity knowledge graphs

    Get PDF
    Cybersecurity knowledge graphs, which represent cyber-knowledge with a graph-based data model, provide holistic approaches for processing massive volumes of complex cybersecurity data derived from diverse sources. They can assist security analysts to obtain cyberthreat intelligence, achieve a high level of cyber-situational awareness, discover new cyber-knowledge, visualize networks, data flow, and attack paths, and understand data correlations by aggregating and fusing data. This paper reviews the most prominent graph-based data models used in this domain, along with knowledge organization systems that define concepts and properties utilized in formal cyber-knowledge representation for both background knowledge and specific expert knowledge about an actual system or attack. It is also discussed how cybersecurity knowledge graphs enable machine learning and facilitate automated reasoning over cyber-knowledge

    Orchestration of machine learning workflows on Internet of Things data

    Get PDF
    Applications empowered by machine learning (ML) and the Internet of Things (IoT) are changing the way people live and impacting a broad range of industries. However, creating and automating ML workflows at scale using real-world IoT data often leads to complex systems integration and production issues. Examples of challenges faced during the development of these ML applications include glue code, hidden dependencies, and data pipeline jungles. This research proposes the Machine Learning Framework for IoT data (ML4IoT), which is designed to orchestrate ML workflows to perform training and enable inference by ML models on IoT data. In the proposed framework, containerized microservices are used to automate the execution of tasks specified in ML workflows, which are defined through REST APIs. To address the problem of integrating big data tools and machine learning into a unified platform, the proposed framework enables the definition and execution of end-to-end ML workflows on large volumes of IoT data. In addition, to address the challenges of running multiple ML workflows in parallel, the ML4IoT has been designed to use container-based components that provide a convenient mechanism to enable the training and deployment of numerous ML models in parallel. Finally, to address the common production issues faced during the development of ML applications, the proposed framework used microservices architecture to bring flexibility, reusability, and extensibility to the framework. Through the experiments, we demonstrated the feasibility of the (ML4IoT), which managed to train and deploy predictive ML models in two types of IoT data. The obtained results suggested that the proposed framework can manage real-world IoT data, by providing elasticity to execute 32 ML workflows in parallel, which were used to train 128 ML models simultaneously. Also, results demonstrated that in the ML4IoT, the performance of rendering online predictions is not affected when 64 ML models are deployed concurrently to infer new information using online IoT data

    ARTIFICIAL INTELLIGENCE-ENABLED EDGE-CENTRIC SOLUTION FOR AUTOMATED ASSESSMENT OF SLEEP USING WEARABLES IN SMART HEALTH

    Get PDF
    ARTIFICIAL INTELLIGENCE-ENABLED EDGE-CENTRIC SOLUTION FOR AUTOMATED ASSESSMENT OF SLEEP USING WEARABLES IN SMART HEALT

    AI Lifecycle Zero-Touch Orchestration within the Edge-to-Cloud Continuum for Industry 5.0

    Get PDF
    The advancements in human-centered artificial intelligence (HCAI) systems for Industry 5.0 is a new phase of industrialization that places the worker at the center of the production process and uses new technologies to increase prosperity beyond jobs and growth. HCAI presents new objectives that were unreachable by either humans or machines alone, but this also comes with a new set of challenges. Our proposed method accomplishes this through the knowlEdge architecture, which enables human operators to implement AI solutions using a zero-touch framework. It relies on containerized AI model training and execution, supported by a robust data pipeline and rounded off with human feedback and evaluation interfaces. The result is a platform built from a number of components, spanning all major areas of the AI lifecycle. We outline both the architectural concepts and implementation guidelines and explain how they advance HCAI systems and Industry 5.0. In this article, we address the problems we encountered while implementing the ideas within the edge-to-cloud continuum. Further improvements to our approach may enhance the use of AI in Industry 5.0 and strengthen trust in AI systems

    An IoT architecture for decision support system in precision livestock

    Get PDF
    Sustainable animal production is a primary goal of technological development in the livestock industry. However, it is crucial to master the livestock environment due to the susceptibility of animals to variables such as temperature and humidity, which can cause illness, production losses, and discomfort. Thus, livestock production systems require monitoring, reasoning, and mitigating unwanted conditions with automated actions. The principal contribution of this study is the introduction of a self-adaptive architecture named e-Livestock to handle animal production decisions. Two case studies were conducted involving a system derived from the e-Livestock architecture, encompassing a Compost Barn production system - an environment and technology where bovine milk production occurs. The outcomes demonstrate the effectiveness of e-Livestock in three key aspects: (i) abstraction of disruptive technologies based on the Internet of Things (IoT) and Artificial Intelligence and their incorporation into a single architecture specific to the livestock domain, (ii) support for the reuse and derivation of an adaptive self-architecture to support the engineering of a decision support system for the livestock subdomain, and (iii) support for empirical studies in a real smart farm to facilitate future technology transfer to the industry. Therefore, our research’s main contribution is developing an architecture combining machine learning techniques and ontology to support more complex decisions when considering a large volume of data generated on farms. The results revealed that the e-Livestock architecture could support monitoring, reasoning, forecasting, and automated actions in a milk production/Compost Barn environment.Na indústria pecuária, a produção animal sustentável é o principal objetivo do desenvolvimento tecnológico. Porém, é fundamental manter boas condições no ambiente devido à suscetibilidade dos animais a variáveis como temperatura e umidade, que podem causar doenças, perdas de produção e desconforto. Assim, os sistemas de produção pecuária requerem monitoramento, controle e mitigação das condições indesejadas através de ações automatizadas. A principal contribuição deste estudo é a introdução de uma arquitetura auto-adaptativa denominada e-Livestock para apoiar as decisões relacionadas à produção animal. Foram conduzidos dois estudos de caso, envolvendo a arquitetura e-Livestock, que foi utilizada no sistema de produção Compost Barn - ambiente e tecnologia onde ocorre a produção de gado leiteiro. Os resultados demonstraram a utilidade do e-Livestock para avaliar três aspectos principais: (i) abstração de tecnologias disruptivas baseadas em Internet das Coisas (IoT) e Inteligência Artificial, e sua incorporação em uma arquitetura única, específica para o domínio da pecuária, (ii) suporte para a reutilização e derivação de uma arquitetura auto-adaptativa para apoiar o desenvolvimento de uma aplicação de apoio à decisão para o subdomínio da pecuária e (iii) suporte para estudos empíricos em uma fazenda inteligente real para facilitar a transferência de tecnologia para a indústria. Portanto, a principal contribuição dessa pesquisa é o desenvolvimento de uma arquitetura combinando técnicas de machine learning e ontologia para apoiar decisões mais complexas ao considerar um grande volume de dados gerados nas fazendas. Os resultados revelaram que a arquitetura e-Livestock pode apoiar monitoramento, controle, previsão e ações automatizadas em um ambiente de produção de leite/Compost Barn.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superio

    BIM-based decision support for building condition assessment

    Get PDF
    Building condition assessment requires the integration of various types of data such as building characteristics, the properties of elements/systems and maintenance records. Previous research has focused on identifying these data and developing a building condition risk assessment model based on Bayesian networks (BN). However, due to interoperability issues, the process of transferring the data is performed manually, which requires considerable time and effort. To address this issue, this paper presents a data model to integrate the building condition risk assessment model into BIM. The proposed data model is implemented in existing software as a case study and tested and evaluated on three scenarios. Addressing interoperability will leverage the BIM tool as a data re- pository to automate the data transfer process and improve its consistency and reliability. It will also enable BIM to be a more effective tool for building condition and causality analysis visualization.This work was supported by Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) from Generalitat de Catalunya under Grant 2019 FI_B00064Postprint (published version
    corecore