13 research outputs found

    Classification of Tensors and Fiber Tracts Using Mercer-Kernels Encoding Soft Probabilistic Spatial and Diffusion Information

    No full text
    In this paper, we present a kernel-based approach to the clustering of diffusion tensors and fiber tracts. We propose to use a Mercer kernel over the tensor space where both spatial and diffusion information are taken into account. This kernel highlights implicitly the connectivity along fiber tracts. Tensor segmentation is performed using kernel-PCA compounded with a landmark-Isomap embedding and k-means clustering. Based on a soft fiber representation, we extend the tensor kernel to deal with fiber tracts using the multi-instance kernel that reflects not only interactions between points along fiber tracts, but also the interactions between diffusion tensors. This unsupervised method is further extended by way of an atlas-based registration of diffusion-free images, followed by a classification of fibers based on nonlinear kernel Support Vector Machines (SVMs). Promising experimental results of tensor and fiber classification of the human skeletal muscle over a significant set of healthy and diseased subjects demonstrate the potential of our approach

    Application of neuroanatomical features to tractography clustering: Neural Features to Fiber Clustering

    Get PDF
    Diffusion tensor imaging allows unprecedented insight into brain neural connectivity in vivo by allowing reconstruction of neuronal tracts via captured patterns of water diffusion in white matter microstructures. However, tractography algorithms often output hundreds of thousands of fibers, rendering subsequent data analysis intractable. As a remedy, fiber clustering techniques are able to group fibers into dozens of bundles and thus facilitate analyses. Most existing fiber clustering methods rely on geometrical information of fibers, by viewing them as curves in 3D Euclidean space. The important neuroanatomical aspect of fibers, however, is ignored. In this article, the neuroanatomical information of each fiber is encapsulated in the associativity vector, which functions as the unique “fingerprint” of the fiber. Specifically, each entry in the associativity vector describes the relationship between the fiber and a certain anatomical ROI in a fuzzy manner. The value of the entry approaches 1 if the fiber is spatially related to the ROI at high confidence; on the contrary, the value drops closer to 0. The confidence of the ROI is calculated by diffusing the ROI according to the underlying fibers from tractography. In particular, we have adopted the fast marching method for simulation of ROI diffusion. Using the associativity vectors of fibers, we further model fibers as observations sampled from multivariate Gaussian mixtures in the feature space. To group all fibers into relevant major bundles, an expectation-maximization clustering approach is employed. Experimental results indicate that our method results in anatomically meaningful bundles that are highly consistent across subjects

    Fiber consistency measures on brain tracts from digital streamline, stochastic and global tractography

    Get PDF
    La tractografía es el proceso que se emplea para estimar la estructura de las fibras nerviosas del interior del cerebro in vivo a partir de datos de Resonancia Magnética (MR). Existen varios métodos de tractografía, que generalmente se dividen en locales y globales. Los primeros intentan reconstruir cada fibra por separado, mientras que los segundos intentan reconstruir todas las estructuras neuronales a la vez, buscando una configuración que mejor se ajusta a los datos proporcionados. Dichos métodos globales han demostrado ser más precisos y fiables que los métodos de tractografía local, para datos sintéticos. Sin embargo hasta la fecha no hay estudios que definan la relación entre los parámetros de adquisición de la MR y los resultados de tractografía estocástica o global con datos reales. Esta tésis de Master pretende mostrar la influencia de ciertos parámetros de adquisición como el factor de difusión de las secuencias de adquisición, el espaciado entre voxels o el número de gradientes en la variabilidad de las tractografías obtenidas.Teoría de la Señal, Comunicaciones e Ingeniería TelemáticaMáster en Investigación en Tecnologías de la Información y las Comunicacione

    Cerebral white matter analysis using diffusion imaging

    Get PDF
    Thesis (Ph. D.)--Harvard-MIT Division of Health Sciences and Technology, 2006.Includes bibliographical references (p. 183-198).In this thesis we address the whole-brain tractography segmentation problem. Diffusion magnetic resonance imaging can be used to create a representation of white matter tracts in the brain via a process called tractography. Whole brain tractography outputs thousands of trajectories that each approximate a white matter fiber pathway. Our method performs automatic organization, or segmention, of these trajectories into anatomical regions and gives automatic region correspondence across subjects. Our method enables both the automatic group comparison of white matter anatomy and of its regional diffusion properties, and the creation of consistent white matter visualizations across subjects. We learn a model of common white matter structures by analyzing many registered tractography datasets simultaneously. Each trajectory is represented as a point in a high-dimensional spectral embedding space, and common structures are found by clustering in this space. By annotating the clusters with anatomical labels, we create a model that we call a high-dimensional white matter atlas.(cont.) Our atlas creation method discovers structures corresponding to expected white matter anatomy, such as the corpus callosum, uncinate fasciculus, cingulum bundles, arcuate fasciculus, etc. We show how to extend the spectral clustering solution, stored in the atlas, using the Nystrom method to perform automatic segmentation of tractography from novel subjects. This automatic tractography segmentation gives an automatic region correspondence across subjects when all subjects are labeled using the atlas. We show the resulting automatic region correspondences, demonstrate that our clustering method is reproducible, and show that the automatically segmented regions can be used for robust measurement of fractional anisotropy.by Lauren Jean O'Donnell.Ph.D

    Population-wise consistent segmentation of diffusion weighted magnetic resonance images

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 161-167).In this thesis, we investigate unsupervised and semi-supervised methods to construct anatomical atlases and segment medical images. We propose an integrated registration and clustering algorithm to compute an anatomical atlas of fiber-bundles as well as deep gray matter structures from a population of diffusion tensor MR images (DT-MRI). We refer to this algorithm as "Consistency Clustering" since the outputs of the algorithm include population-wise consistent segmentations and correspondence between the subjects. The consistency is ensured through using a single anatomical model for the whole population, which is similar to the atlases used by experts for manual labeling. We experiment with both parametric and non-parametric models for the gray matter and white matter segmentation problems, each model resulting in a different kind of atlas. Consistent population-wise segmentations require development of several integrated algorithms for clustering, registration, atlas-building and outlier rejection. In this thesis we develop, implement and evaluate these tools individually and together as a population-wise segmentation tool. Together, Consistency Clustering enables automatic atlas construction in DT-MRI for a population, either normal or affected by a neural disorder. Consistency Clustering also provides the user the choice to include prior knowledge through a few labeled subjects (semi-supervised) or compute an anatomical atlas in a completely data driven manner (unsupervised). Furthermore, resulting anatomical models are compact representations of populations and can be used for population-wise morphometry. We implement and evaluate these methods using in vivo DT-MRI datasets. We investigate the benefits of population-wise segmentation as opposed to individually segmenting subjects, as well as effects of noise and initialization on the segmentations.by Ulas Ziyan.Ph.D

    Quantitative analysis of cerebral white matter anatomy from diffusion MRI

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 165-177).In this thesis we develop algorithms for quantitative analysis of white matter fiber tracts from diffusion MRI. The presented methods enable us to look at the variation of a diffusion measure along a fiber tract in a single subject or a population, which allows important clinical studies toward understanding the relation between the changes in the diffusion measures and brain diseases, development, and aging. The proposed quantitative analysis is performed on a group of fiber trajectories extracted from diffusion MRI by a process called tractography. To enable the quantitative analysis we first need to cluster similar trajectories into groups that correspond to anatomical bundles and to establish the point correspondence between these variable-length trajectories. We propose a computationally-efficient approach to find the point correspondence and the distance between each trajectory to the prototype center of each bundle. Based on the computed distances we also develop a novel model-based clustering of trajectories into anatomically-known fiber bundles. In order to cluster the trajectories, we formulate an expectation maximization algorithm to infer the parameters of the gamma-mixture model that we built on the distances between trajectories and cluster centers. We also extend the proposed clustering algorithm to incorporate spatial anatomical information at different levels through hierarchical Bayesian modeling. We demonstrate the effectiveness of the proposed methods in several clinical applications. In particular, we present our findings in identifying localized group differences in fiber tracts between normal and schizophrenic populations.by Mahnaz Maddah.Ph.D
    corecore