1,245 research outputs found

    Multi-level Semantic Analysis for Sports Video

    Get PDF
    There has been a huge increase in the utilization of video as one of the most preferred type of media due to its content richness for many significant applications including sports. To sustain an ongoing rapid growth of sports video, there is an emerging demand for a sophisticated content-based indexing system. Users recall video contents in a high-level abstraction while video is generally stored as an arbitrary sequence of audio-visual tracks. To bridge this gap, this paper will demonstrate the use of domain knowledge and characteristics to design the extraction of high-level concepts directly from audio-visual features. In particular, we propose a multi-level semantic analysis framework to optimize the sharing of domain characteristics

    SoccerNet: A Scalable Dataset for Action Spotting in Soccer Videos

    Full text link
    In this paper, we introduce SoccerNet, a benchmark for action spotting in soccer videos. The dataset is composed of 500 complete soccer games from six main European leagues, covering three seasons from 2014 to 2017 and a total duration of 764 hours. A total of 6,637 temporal annotations are automatically parsed from online match reports at a one minute resolution for three main classes of events (Goal, Yellow/Red Card, and Substitution). As such, the dataset is easily scalable. These annotations are manually refined to a one second resolution by anchoring them at a single timestamp following well-defined soccer rules. With an average of one event every 6.9 minutes, this dataset focuses on the problem of localizing very sparse events within long videos. We define the task of spotting as finding the anchors of soccer events in a video. Making use of recent developments in the realm of generic action recognition and detection in video, we provide strong baselines for detecting soccer events. We show that our best model for classifying temporal segments of length one minute reaches a mean Average Precision (mAP) of 67.8%. For the spotting task, our baseline reaches an Average-mAP of 49.7% for tolerances δ\delta ranging from 5 to 60 seconds. Our dataset and models are available at https://silviogiancola.github.io/SoccerNet.Comment: CVPR Workshop on Computer Vision in Sports 201

    A semantic event detection approach for soccer video based on perception concepts and finite state machines

    Get PDF
    A significant application area for automated video analysis technology is the generation of personalized highlights of sports events. Sports games are always composed of a range of significant events. Automatically detecting these events in a sports video can enable users to interactively select their own highlights. In this paper we propose a semantic event detection approach based on Perception Concepts and Finite State Machines to automatically detect significant events within soccer video. Firstly we define a Perception Concept set for soccer videos based on identifiable feature elements within a soccer video. Secondly we design PC-FSM models to describe semantic events in soccer videos. A particular strength of this approach is that users are able to design their own semantic events and transfer event detection into graph matching. Experimental results based on recorded soccer broadcasts are used to illustrate the potential of this approach

    Event detection in field sports video using audio-visual features and a support vector machine

    Get PDF
    In this paper, we propose a novel audio-visual feature-based framework for event detection in broadcast video of multiple different field sports. Features indicating significant events are selected and robust detectors built. These features are rooted in characteristics common to all genres of field sports. The evidence gathered by the feature detectors is combined by means of a support vector machine, which infers the occurrence of an event based on a model generated during a training phase. The system is tested generically across multiple genres of field sports including soccer, rugby, hockey, and Gaelic football and the results suggest that high event retrieval and content rejection statistics are achievable

    High-level feature detection from video in TRECVid: a 5-year retrospective of achievements

    Get PDF
    Successful and effective content-based access to digital video requires fast, accurate and scalable methods to determine the video content automatically. A variety of contemporary approaches to this rely on text taken from speech within the video, or on matching one video frame against others using low-level characteristics like colour, texture, or shapes, or on determining and matching objects appearing within the video. Possibly the most important technique, however, is one which determines the presence or absence of a high-level or semantic feature, within a video clip or shot. By utilizing dozens, hundreds or even thousands of such semantic features we can support many kinds of content-based video navigation. Critically however, this depends on being able to determine whether each feature is or is not present in a video clip. The last 5 years have seen much progress in the development of techniques to determine the presence of semantic features within video. This progress can be tracked in the annual TRECVid benchmarking activity where dozens of research groups measure the effectiveness of their techniques on common data and using an open, metrics-based approach. In this chapter we summarise the work done on the TRECVid high-level feature task, showing the progress made year-on-year. This provides a fairly comprehensive statement on where the state-of-the-art is regarding this important task, not just for one research group or for one approach, but across the spectrum. We then use this past and on-going work as a basis for highlighting the trends that are emerging in this area, and the questions which remain to be addressed before we can achieve large-scale, fast and reliable high-level feature detection on video

    A framework for automatic semantic video annotation

    Get PDF
    The rapidly increasing quantity of publicly available videos has driven research into developing automatic tools for indexing, rating, searching and retrieval. Textual semantic representations, such as tagging, labelling and annotation, are often important factors in the process of indexing any video, because of their user-friendly way of representing the semantics appropriate for search and retrieval. Ideally, this annotation should be inspired by the human cognitive way of perceiving and of describing videos. The difference between the low-level visual contents and the corresponding human perception is referred to as the ‘semantic gap’. Tackling this gap is even harder in the case of unconstrained videos, mainly due to the lack of any previous information about the analyzed video on the one hand, and the huge amount of generic knowledge required on the other. This paper introduces a framework for the Automatic Semantic Annotation of unconstrained videos. The proposed framework utilizes two non-domain-specific layers: low-level visual similarity matching, and an annotation analysis that employs commonsense knowledgebases. Commonsense ontology is created by incorporating multiple-structured semantic relationships. Experiments and black-box tests are carried out on standard video databases for action recognition and video information retrieval. White-box tests examine the performance of the individual intermediate layers of the framework, and the evaluation of the results and the statistical analysis show that integrating visual similarity matching with commonsense semantic relationships provides an effective approach to automated video annotation

    AVA: A Video Dataset of Spatio-temporally Localized Atomic Visual Actions

    Get PDF
    This paper introduces a video dataset of spatio-temporally localized Atomic Visual Actions (AVA). The AVA dataset densely annotates 80 atomic visual actions in 430 15-minute video clips, where actions are localized in space and time, resulting in 1.58M action labels with multiple labels per person occurring frequently. The key characteristics of our dataset are: (1) the definition of atomic visual actions, rather than composite actions; (2) precise spatio-temporal annotations with possibly multiple annotations for each person; (3) exhaustive annotation of these atomic actions over 15-minute video clips; (4) people temporally linked across consecutive segments; and (5) using movies to gather a varied set of action representations. This departs from existing datasets for spatio-temporal action recognition, which typically provide sparse annotations for composite actions in short video clips. We will release the dataset publicly. AVA, with its realistic scene and action complexity, exposes the intrinsic difficulty of action recognition. To benchmark this, we present a novel approach for action localization that builds upon the current state-of-the-art methods, and demonstrates better performance on JHMDB and UCF101-24 categories. While setting a new state of the art on existing datasets, the overall results on AVA are low at 15.6% mAP, underscoring the need for developing new approaches for video understanding.Comment: To appear in CVPR 2018. Check dataset page https://research.google.com/ava/ for detail
    corecore