43,036 research outputs found

    On Performance Estimation in Automatic Algorithm Configuration

    Full text link
    Over the last decade, research on automated parameter tuning, often referred to as automatic algorithm configuration (AAC), has made significant progress. Although the usefulness of such tools has been widely recognized in real world applications, the theoretical foundations of AAC are still very weak. This paper addresses this gap by studying the performance estimation problem in AAC. More specifically, this paper first proves the universal best performance estimator in a practical setting, and then establishes theoretical bounds on the estimation error, i.e., the difference between the training performance and the true performance for a parameter configuration, considering finite and infinite configuration spaces respectively. These findings were verified in extensive experiments conducted on four algorithm configuration scenarios involving different problem domains. Moreover, insights for enhancing existing AAC methods are also identified.Comment: accepted by AAAI 202

    Leveraging Benchmarking Data for Informed One-Shot Dynamic Algorithm Selection

    Get PDF
    A key challenge in the application of evolutionary algorithms in practice is the selection of an algorithm instance that best suits the problem at hand. What complicates this decision further is that different algorithms may be best suited for different stages of the optimization process. Dynamic algorithm selection and configuration are therefore well-researched topics in evolutionary computation. However, while hyper-heuristics and parameter control studies typically assume a setting in which the algorithm needs to be chosen while running the algorithms, without prior information, AutoML approaches such as hyper-parameter tuning and automated algorithm configuration assume the possibility of evaluating different configurations before making a final recommendation. In practice, however, we are often in a middle-ground between these two settings, where we need to decide on the algorithm instance before the run ("oneshot" setting), but where we have (possibly lots of) data available on which we can base an informed decision. We analyze in this work how such prior performance data can be used to infer informed dynamic algorithm selection schemes for the solution of pseudo-Boolean optimization problems. Our specific use-case considers a family of genetic algorithms.Comment: Submitted for review to GECCO'2

    MaLeS: A Framework for Automatic Tuning of Automated Theorem Provers

    Full text link
    MaLeS is an automatic tuning framework for automated theorem provers. It provides solutions for both the strategy finding as well as the strategy scheduling problem. This paper describes the tool and the methods used in it, and evaluates its performance on three automated theorem provers: E, LEO-II and Satallax. An evaluation on a subset of the TPTP library problems shows that on average a MaLeS-tuned prover solves 8.67% more problems than the prover with its default settings

    Deep Reinforcement Learning for Adaptive Parameter Control in Differential Evolution for Multi-Objective Optimization

    Get PDF
    Evolutionary algorithms (EA) are efficient population-based stochastic algorithms for solving optimization problems. The performance of EAs largely depends on the configuration of values of parameters that control their search. Previous works studied how to configure EAs, though, there is a lack of a general approach to effectively tune EAs. To fill this gap, this paper presents a consistent, automated approach for tuning and controlling parameterized search of an EA. For this, we propose a deep reinforcement learning (DRL) based approach called ‘DRL-APC-DE’ for online controlling search parameter values for a multi-objective Differential Evolution algorithm. The proposed method is trained and evaluated on widely adopted multi-objective test problems. The experimental results show that the proposed approach performs competitively to a non-adaptive Differential Evolution algorithm, tuned by grid search on the same range of possible parameter values. Subsequently, the trained algorithms have been applied to unseen multi-objective problems for the adaptive control of parameters. Results show the successful ability of DRL-APC-DE to control parameters for solving these problems, which has the potential to significantly reduce the dependency on parameter tuning for the successful application of EAs
    • …
    corecore