32,346 research outputs found

    Group Inquiry

    Get PDF
    Group agents can act, they can have knowledge. How should we understand the species of collective action which aims at knowledge? In this paper, I present an account of group inquiry. This account faces two challenges: making sense of how large-scale distributed activities might be a kind of group action, and understanding the division of labour involved in group inquiry. In the first part of the paper, I argue that existing accounts of group action face problems dealing with large-scale group actions, and propose a minimal alternative account. In the second part of the paper, I draw on an analogy between inquiry and conversation, arguing that work by Robert Stalnaker and Craige Roberts helps us to think about the division of epistemic labour. In the final part of the paper I put the accounts of group action and inquiry together, and consider how to think about group knowledge, deep ignorance, and the different kinds of division of labour

    The Knowledge Grid: A Platform to Increase the Interoperability of Computable Knowledge and Produce Advice for Health

    Full text link
    Here we demonstrate how more highly interoperable computable knowledge enables systems to generate large quantities of evidence-based advice for health. We first provide a thorough analysis of advice. Then, because advice derives from knowledge, we turn our focus to computable, i.e., machine-interpretable, forms for knowledge. We consider how computable knowledge plays dual roles as a resource conveying content and as an advice enabler. In this latter role, computable knowledge is combined with data about a decision situation to generate advice targeted at the pending decision. We distinguish between two types of automated services. When a computer system provides computable knowledge, we say that it provides a knowledge service. When computer system combines computable knowledge with instance data to provide advice that is specific to an unmade decision we say that it provides an advice-giving service. The work here aims to increase the interoperability of computable knowledge to bring about better knowledge services and advice-giving services for health. The primary motivation for this research is the problem of missing or inadequate advice about health topics. The global demand for well-informed health advice far exceeds the global supply. In part to overcome this scarcity, the design and development of Learning Health Systems is being pursued at various levels of scale: local, regional, state, national, and international. Learning Health Systems fuse capabilities to generate new computable biomedical knowledge with other capabilities to rapidly and widely use computable biomedical knowledge to inform health practices and behaviors with advice. To support Learning Health Systems, we believe that knowledge services and advice-giving services have to be more highly interoperable. I use examples of knowledge services and advice-giving services which exclusively support medication use. This is because I am a pharmacist and pharmacy is the biomedical domain that I know. The examples here address the serious problems of medication adherence and prescribing safety. Two empirical studies are shared that demonstrate the potential to address these problems and make improvements by using advice. But primarily we use these examples to demonstrate general and critical differences between stand-alone, unique approaches to handling computable biomedical knowledge, which make it useful for one system, and common, more highly interoperable approaches, which can make it useful for many heterogeneous systems. Three aspects of computable knowledge interoperability are addressed: modularity, identity, and updateability. We demonstrate that instances of computable knowledge, and related instances of knowledge services and advice-giving services, can be modularized. We also demonstrate the utility of uniquely identifying modular instances of computable knowledge. Finally, we build on the computing concept of pipelining to demonstrate how computable knowledge modules can automatically be updated and rapidly deployed. Our work is supported by a fledgling technical knowledge infrastructure platform called the Knowledge Grid. It includes formally specified compound digital objects called Knowledge Objects, a conventional digital Library that serves as a Knowledge Object repository, and an Activator that provides an application programming interface (API) for computable knowledge. The Library component provides knowledge services. The Activator component provides both knowledge services and advice-giving services. In conclusion, by increasing the interoperability of computable biomedical knowledge using the Knowledge Grid, we demonstrate new capabilities to generate well-informed health advice at a scale. These new capabilities may ultimately support Learning Health Systems and boost health for large populations of people who would otherwise not receive well-informed health advice.PHDInformationUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/146073/1/ajflynn_1.pd

    A literature synthesis of personalised technology-enhanced learning: what works and why

    Get PDF
    Personalised learning, having seen both surges and declines in popularity over the past few decades, is once again enjoying a resurgence. Examples include digital resources tailored to a particular learner’s needs, or individual feedback on a student’s assessed work. In addition, personalised technology-enhanced learning (TEL) now seems to be attracting interest from philanthropists and venture capitalists indicating a new level of enthusiasm for the area and a potential growth industry. However, these industries may be driven by profit rather than pedagogy, and hence it is vital these new developments are informed by relevant, evidence-based research. For many people, personalised learning is an ambiguous and even loaded term that promises much but does not always deliver. This paper provides an in-depth and critical review and synthesis of how personalisation has been represented in the literature since 2000, with a particular focus on TEL. We examine the reasons why personalised learning can be beneficial and examine how TEL can contribute to this. We also unpack how personalisation can contribute to more effective learning. Lastly, we examine the limitations of personalised learning and discuss the potential impacts on wider stakeholders

    Festival publicity helped change fishing policy.

    Get PDF
    • …
    corecore