69 research outputs found

    Cognitive Correlates of Hippocampal Atrophy and Ventricular Enlargement in Adults with or without Mild Cognitive Impairment

    Get PDF
    We analyzed structural magnetic resonance imaging data from 58 cognitively normal and 101 mild cognitive impairment subjects. We used a general linear regression model to study the association between cognitive performance with hippocampal atrophy and ventricular enlargement using the radial distance method. Bilateral hippocampal atrophy was associated with baseline and longitudinal memory performance. Left hippocampal atrophy predicted longitudinal decline in visuospatial function. The multidomain ventricular analysis did not reveal any significant predictors

    ApoE4 effects on automated diagnostic classifiers for mild cognitive impairment and Alzheimer's disease

    Get PDF
    Biomarkers are the only feasible way to detect and monitor presymptomatic Alzheimer's disease (AD). No single biomarker can predict future cognitive decline with an acceptable level of accuracy. In addition to designing powerful multimodal diagnostic platforms, a careful investigation of the major sources of disease heterogeneity and their influence on biomarker changes is needed. Here we investigated the accuracy of a novel multimodal biomarker classifier for differentiating cognitively normal (NC), mild cognitive impairment (MCI) and AD subjects with and without stratification by ApoE4 genotype. 111 NC, 182 MCI and 95 AD ADNI participants provided both structural MRI and CSF data at baseline. We used an automated machine-learning classifier to test the ability of hippocampal volume and CSF Aβ, t-tau and p-tau levels, both separately and in combination, to differentiate NC, MCI and AD subjects, and predict conversion. We hypothesized that the combined hippocampal/CSF biomarker classifier model would achieve the highest accuracy in differentiating between the three diagnostic groups and that ApoE4 genotype will affect both diagnostic accuracy and biomarker selection. The combined hippocampal/CSF classifier performed better than hippocampus-only classifier in differentiating NC from MCI and NC from AD. It also outperformed the CSF-only classifier in differentiating NC vs. AD. Our amyloid marker played a role in discriminating NC from MCI or AD but not for MCI vs. AD. Neurodegenerative markers contributed to accurate discrimination of AD from NC and MCI but not NC from MCI. Classifiers predicting MCI conversion performed well only after ApoE4 stratification. Hippocampal volume and sex achieved AUC = 0.68 for predicting conversion in the ApoE4-positive MCI, while CSF p-tau, education and sex achieved AUC = 0.89 for predicting conversion in ApoE4-negative MCI. These observations support the proposed biomarker trajectory in AD, which postulates that amyloid markers become abnormal early in the disease course while markers of neurodegeneration become abnormal later in the disease course and suggests that ApoE4 could be at least partially responsible for some of the observed disease heterogeneity. © 2013 The Authors

    Influence of APOE Genotype on Hippocampal Atrophy over Time - An N=1925 Surface-Based ADNI Study

    Get PDF
    abstract: The apolipoprotein E (APOE) e4 genotype is a powerful risk factor for late-onset Alzheimer’s disease (AD). In the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort, we previously reported significant baseline structural differences in APOE e4 carriers relative to non-carriers, involving the left hippocampus more than the right—a difference more pronounced in e4 homozygotes than heterozygotes. We now examine the longitudinal effects of APOE genotype on hippocampal morphometry at 6-, 12- and 24-months, in the ADNI cohort. We employed a new automated surface registration system based on conformal geometry and tensor-based morphometry. Among different hippocampal surfaces, we computed high-order correspondences, using a novel inverse-consistent surface-based fluid registration method and multivariate statistics consisting of multivariate tensor-based morphometry (mTBM) and radial distance. At each time point, using Hotelling’s T[superscript 2] test, we found significant morphological deformation in APOE e4 carriers relative to non-carriers in the full cohort as well as in the non-demented (pooled MCI and control) subjects at each follow-up interval. In the complete ADNI cohort, we found greater atrophy of the left hippocampus than the right, and this asymmetry was more pronounced in e4 homozygotes than heterozygotes. These findings, combined with our earlier investigations, demonstrate an e4 dose effect on accelerated hippocampal atrophy, and support the enrichment of prevention trial cohorts with e4 carriers.The article is published at http://journals.plos.org/plosone/article?id=10.1371/journal.pone.015290

    Longitudinal Morphometric Study of Genetic Influence of APOE e4 Genotype on Hippocampal Atrophy - An N=1925 Surface-based ADNI Study

    Get PDF
    abstract: The apolipoprotein E (APOE) e4 genotype is the most prevalent known genetic risk factor for Alzheimer's disease (AD). In this paper, we examined the longitudinal effect of APOE e4 on hippocampal morphometry in Alzheimer's Disease Neuroimaging Initiative (ADNI). Generally, atrophy of hippocampus has more chance occurs in AD patients who carrying the APOE e4 allele than those who are APOE e4 noncarriers. Also, brain structure and function depend on APOE genotype not just for Alzheimer's disease patients but also in health elderly individuals, so APOE genotyping is considered critical in clinical trials of Alzheimer's disease. We used a large sample of elderly participants, with the help of a new automated surface registration system based on surface conformal parameterization with holomorphic 1-forms and surface fluid registration. In this system, we automatically segmented and constructed hippocampal surfaces from MR images at many different time points, such as 6 months, 1- and 2-year follow up. Between the two different hippocampal surfaces, we did the high-order correspondences, using a novel inverse consistent surface fluid registration method. At each time point, using Hotelling's T^2 test, we found significant morphological deformation in APOE e4 carriers relative to noncarriers in the entire cohort as well as in the non-demented (pooled MCI and control) subjects, affecting the left hippocampus more than the right, and this effect was more pronounced in e4 homozygotes than heterozygotes.Dissertation/ThesisMasters Thesis Computer Science 201

    Surface fluid registration of conformal representation: Application to detect disease burden and genetic influence on hippocampus

    Get PDF
    abstract: In this paper, we develop a new automated surface registration system based on surface conformal parameterization by holomorphic 1-forms, inverse consistent surface fluid registration, and multivariate tensor-based morphometty (mTBM). First, we conformally map a surface onto a planar rectangle space with holomorphic 1-forms. Second, we compute surface conformal representation by combining its local conformal factor and mean curvature and linearly scale the dynamic range of the conformal representation to form the feature image of the surface. Third, we align the feature image with a chosen template image via the fluid image registration algorithm, which has been extended into the curvilinear coordinates to adjust for the distortion introduced by surface parameterization. The inverse consistent image registration algorithm is also incorporated in the system to jointly estimate the forward and inverse transformations between the study and template images. This alignment induces a corresponding deformation on the surface. We tested the system on Alzheimer's Disease Neuroimaging Initiative (ADNI) baseline dataset to study AD symptoms on hippocampus. In our system, by modeling a hippocampus as a 3D parametric surface, we nonlinearly registered each surface with a selected template surface. Then we used mTBM to analyze the morphometry difference between diagnostic groups. Experimental results show that the new system has better performance than two publicly available subcortical surface registration tools: FIRST and SPHARM. We also analyzed the genetic influence of the Apolipoprotein E(is an element of)4 allele (ApoE4), which is considered as the most prevalent risk factor for AD. Our work successfully detected statistically significant difference between ApoE4 carriers and non-carriers in both patients of mild cognitive impairment (MCI) and healthy control subjects. The results show evidence that the ApoE genotype may be associated with accelerated brain atrophy so that our work provides a new MRI analysis tool that may help presymptomatic AD research.NOTICE: this is the author’s version of a work that was accepted for publication in NEUROIMAGE. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Neuroimage, 78, 111-134 [2013] http://dx.doi.org/10.1016/j.neuroimage.2013.04.01

    2014 Update of the Alzheimer's Disease Neuroimaging Initiative: A review of papers published since its inception

    Get PDF
    The Alzheimer's Disease Neuroimaging Initiative (ADNI) is an ongoing, longitudinal, multicenter study designed to develop clinical, imaging, genetic, and biochemical biomarkers for the early detection and tracking of Alzheimer's disease (AD). The initial study, ADNI-1, enrolled 400 subjects with early mild cognitive impairment (MCI), 200 with early AD, and 200 cognitively normal elderly controls. ADNI-1 was extended by a 2-year Grand Opportunities grant in 2009 and by a competitive renewal, ADNI-2, which enrolled an additional 550 participants and will run until 2015. This article reviews all papers published since the inception of the initiative and summarizes the results to the end of 2013. The major accomplishments of ADNI have been as follows: (1) the development of standardized methods for clinical tests, magnetic resonance imaging (MRI), positron emission tomography (PET), and cerebrospinal fluid (CSF) biomarkers in a multicenter setting; (2) elucidation of the patterns and rates of change of imaging and CSF biomarker measurements in control subjects, MCI patients, and AD patients. CSF biomarkers are largely consistent with disease trajectories predicted by β-amyloid cascade (Hardy, J Alzheimer's Dis 2006;9(Suppl 3):151-3) and tau-mediated neurodegeneration hypotheses for AD, whereas brain atrophy and hypometabolism levels show predicted patterns but exhibit differing rates of change depending on region and disease severity; (3) the assessment of alternative methods of diagnostic categorization. Currently, the best classifiers select and combine optimum features from multiple modalities, including MRI, [(18)F]-fluorodeoxyglucose-PET, amyloid PET, CSF biomarkers, and clinical tests; (4) the development of blood biomarkers for AD as potentially noninvasive and low-cost alternatives to CSF biomarkers for AD diagnosis and the assessment of α-syn as an additional biomarker; (5) the development of methods for the early detection of AD. CSF biomarkers, β-amyloid 42 and tau, as well as amyloid PET may reflect the earliest steps in AD pathology in mildly symptomatic or even nonsymptomatic subjects and are leading candidates for the detection of AD in its preclinical stages; (6) the improvement of clinical trial efficiency through the identification of subjects most likely to undergo imminent future clinical decline and the use of more sensitive outcome measures to reduce sample sizes. Multimodal methods incorporating APOE status and longitudinal MRI proved most highly predictive of future decline. Refinements of clinical tests used as outcome measures such as clinical dementia rating-sum of boxes further reduced sample sizes; (7) the pioneering of genome-wide association studies that leverage quantitative imaging and biomarker phenotypes, including longitudinal data, to confirm recently identified loci, CR1, CLU, and PICALM and to identify novel AD risk loci; (8) worldwide impact through the establishment of ADNI-like programs in Japan, Australia, Argentina, Taiwan, China, Korea, Europe, and Italy; (9) understanding the biology and pathobiology of normal aging, MCI, and AD through integration of ADNI biomarker and clinical data to stimulate research that will resolve controversies about competing hypotheses on the etiopathogenesis of AD, thereby advancing efforts to find disease-modifying drugs for AD; and (10) the establishment of infrastructure to allow sharing of all raw and processed data without embargo to interested scientific investigators throughout the world

    Modifying the minimum criteria for diagnosing amnestic MCI to improve prediction of brain atrophy and progression to Alzheimer’s disease

    Get PDF
    Mild cognitive impairment (MCI) is a heterogeneous condition with variable outcomes. Improving diagnosis to increase the likelihood that MCI reliably reflects prodromal Alzheimer's Disease (AD) would be of great benefit for clinical practice and intervention trials. In 230 cognitively normal (CN) and 394 MCI individuals from the Alzheimer's Disease Neuroimaging Initiative, we studied whether an MCI diagnostic requirement of impairment on at least two episodic memory tests improves 3-year prediction of medial temporal lobe atrophy and progression to AD. Based on external age-adjusted norms for delayed free recall on the Rey Auditory Verbal Learning Test (AVLT), MCI participants were further classified as having normal (AVLT+, above -1 SD, n = 121) or impaired (AVLT -, -1 SD or below, n = 273) AVLT performance. CN, AVLT+, and AVLT- groups differed significantly on baseline brain (hippocampus, entorhinal cortex) and cerebrospinal fluid (amyloid, tau, p-tau) biomarkers, with the AVLT- group being most abnormal. The AVLT- group had significantly more medial temporal atrophy and a substantially higher AD progression rate than the AVLT+ group (51% vs. 16%, p <0.001). The AVLT+ group had similar medial temporal trajectories compared to CN individuals. Results were similar even when restricted to individuals with above average (based on the CN group mean) baseline medial temporal volume/thickness. Requiring impairment on at least two memory tests for MCI diagnosis can markedly improve prediction of medial temporal atrophy and conversion to AD, even in the absence of baseline medial temporal atrophy. This modification constitutes a practical and cost-effective approach for clinical and research settings.Peer reviewe

    Impact of the Alzheimer's Disease Neuroimaging Initiative, 2004 to 2014

    Get PDF
    INTRODUCTION: The Alzheimer's Disease Neuroimaging Initiative (ADNI) was established in 2004 to facilitate the development of effective treatments for Alzheimer's disease (AD) by validating biomarkers for AD clinical trials. METHODS: We searched for ADNI publications using established methods. RESULTS: ADNI has (1) developed standardized biomarkers for use in clinical trial subject selection and as surrogate outcome measures; (2) standardized protocols for use across multiple centers; (3) initiated worldwide ADNI; (4) inspired initiatives investigating traumatic brain injury and post-traumatic stress disorder in military populations, and depression, respectively, as an AD risk factor; (5) acted as a data-sharing model; (6) generated data used in over 600 publications, leading to the identification of novel AD risk alleles, and an understanding of the relationship between biomarkers and AD progression; and (7) inspired other public-private partnerships developing biomarkers for Parkinson's disease and multiple sclerosis. DISCUSSION: ADNI has made myriad impacts in its first decade. A competitive renewal of the project in 2015 would see the use of newly developed tau imaging ligands, and the continued development of recruitment strategies and outcome measures for clinical trials

    MRI Measures of Neurodegeneration as Biomarkers of Alzheimer's Disease

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Alzheimer’s disease (AD) is the most common age-related neurodegenerative disease. Many researchers believe that an effective AD treatment will prevent the development of disease rather than treat the disease after a diagnosis. Therefore, the development of tools to detect AD-related pathology in early stages is an important goal. In this report, MRI-based markers of neurodegeneration are explored as biomarkers of AD. In the first chapter, the sensitivity of cross-sectional MRI biomarkers to neurodegenerative changes is evaluated in AD patients and in patients with a diagnosis of mild cognitive impairment (MCI), a prodromal stage of AD. The results in Chapter 1 suggest that cross-sectional MRI biomarkers effectively measure neurodegeneration in AD and MCI patients and are sensitive to atrophic changes in patients who convert from MCI to AD up to 1 year before clinical conversion. Chapter 2 investigates longitudinal MRI-based measures of neurodegeneration as biomarkers of AD. In Chapter 2a, measures of brain atrophy rate in a cohort of AD and MCI patients are evaluated; whereas in Chapter 2b, these measures are assessed in a pre-MCI stage, namely older adults with cognitive complaints (CC) but no significant deficits. The results from Chapter 2 suggest that dynamic MRI-based measures of neurodegeneration are sensitive biomarkers for measuring progressive atrophy associated with the development of AD. In the final chapter, a novel biomarker for AD, visual contrast sensitivity, was evaluated. The results demonstrated contrast sensitivity impairments in AD and MCI patients, as well as slightly in CC participants. Impaired contrast sensitivity was also shown to be significantly associated with known markers of AD, including cognitive impairments and temporal lobe atrophy on MRI-based measures. The results of Chapter 3 support contrast sensitivity as a potential novel biomarker for AD and suggest that future studies are warranted. Overall, the results of this report support MRI-based measures of neurodegeneration as effective biomarkers for AD, even in early clinical and preclinical disease stages. Future therapeutic trials may consider utilizing these measures to evaluate potential treatment efficacy and mechanism of action, as well as for sample enrichment with patients most likely to rapidly progress towards AD
    • …
    corecore