9 research outputs found

    Explicit force control V.S. impedance control for micromanipulation.

    No full text
    International audienceThis paper presents a study of different force control schemes for controlling contact during manipulation tasks at the microscale. Explicit force control and impedance control are compared in a contact transition scenario consisting of a compliant microforce sensor mounted on a microrobotic positioner, and a compliant microstructure fabricated using Silicon MEMS. A traditional double mass-spring-damper model of the overall robot is employed to develop the closed-loop force controllers. Specific differences between the two control schemes due to the microscale nature of contact are highlighted in this paper from the experimental results obtained. The limitations and tradeoffs of the two control laws at the microscale due to the presence of backlash are discussed. A simple method to deal with the pull-off force effects specific to the microscale is proposed. Future improvements of the impedance control schemes to include adaptation are discussed in order to handle objects with unknown stiffness

    Workshop on "Control issues in the micro / nano - world".

    No full text
    International audienceDuring the last decade, the need of systems with micro/nanometers accuracy and fast dynamics has been growing rapidly. Such systems occur in applications including 1) micromanipulation of biological cells, 2) micrassembly of MEMS/MOEMS, 3) micro/nanosensors for environmental monitoring, 4) nanometer resolution imaging and metrology (AFM and SEM). The scale and requirement of such systems present a number of challenges to the control system design that will be addressed in this workshop. Working in the micro/nano-world involves displacements from nanometers to tens of microns. Because of this precision requirement, environmental conditions such as temperature, humidity, vibration, could generate noise and disturbance that are in the same range as the displacements of interest. The so-called smart materials, e.g., piezoceramics, magnetostrictive, shape memory, electroactive polymer, have been used for actuation or sensing in the micro/nano-world. They allow high resolution positioning as compared to hinges based systems. However, these materials exhibit hysteresis nonlinearity, and in the case of piezoelectric materials, drifts (called creep) in response to constant inputs In the case of oscillating micro/nano-structures (cantilever, tube), these nonlinearities and vibrations strongly decrease their performances. Many MEMS and NEMS applications involve gripping, feeding, or sorting, operations, where sensor feedback is necessary for their execution. Sensors that are readily available, e.g., interferometer, triangulation laser, and machine vision, are bulky and expensive. Sensors that are compact in size and convenient for packaging, e.g., strain gage, piezoceramic charge sensor, etc., have limited performance or robustness. To account for these difficulties, new control oriented techniques are emerging, such as[d the combination of two or more ‘packageable' sensors , the use of feedforward control technique which does not require sensors, and the use of robust controllers which account the sensor characteristics. The aim of this workshop is to provide a forum for specialists to present and overview the different approaches of control system design for the micro/nano-world and to initiate collaborations and joint projects

    マルチ スケール キノウ ヲ ユウスル コウソク ジドウ マイクロ マニピュレーション システム

    Full text link
    Ebubekir Avci, Chanh-Nghiem Nguyen, Kenichi Ohara, Yasushi Mae, Tatsuo Arai, Analysis and suppression of residual vibration in microhand for high-speed single-cell manipulation, International Journal of Mechatronics and Automation, 2013-Vol.3, No.2, pp.110-11

    Advanced instrumented stamps for micro transfer printing and novel application areas

    Get PDF
    Transfer printing refers to a set of techniques for deterministic assembly of functional micro/nano scale devices into two and three dimensional spatial arrangements. It provides a versatile route for realizing multifunctional heterogeneously integrated systems such as flexible electronics, biocompatible sensing and therapeutic devices, transparent and curved optoelectronic systems etc. Micro-transfer printing is an automated process that implements deterministic micro scale assembly using a molded viscoelastic stamp typically made out of PDMS. The process relies upon the control of adhesion and fracture at the interfaces between the stamp and the devices being assembled to pick up and release them. A widely exploited strategy to achieve variable adhesion from the stamp is to use the rate dependent effects of the viscoelastic stamp material. It is a very versatile process and has been used in the realization of many novel heterogeneously integrated systems. The process has been implemented industrially to assemble ultra-high concentration photovoltaic panels. This body of work presents the development of new stamp technologies to address the challenges associated with increasing parallelism and shortcomings associated with fixed geometry stamps. Starting from the concept of an active composite material with distributed sensing, actuation and compliance tuning, new stamp architectures are developed. These novel stamps replace the compliance of a bulk PDMS stamp with active functional structures with tunable stiffness; without effecting the ability of the stamps to be used for transfer printing. The new stamp architecture enables active monitoring and control of the micro transfer printing process. Using instrumentation to sense deflections/forces at each post allows detection, measurement and compensation of misalignments between the stamp and donor/receiving substrates. Furthermore this information is used to detect pick up and printing errors at individual posts, allowing for error handling to increase process robustness. Moreover the ability to selectively actuate allows to engage/disengage individual posts. This enables new transfer printing modes such as collect and place. Finally results of pilot experiments conducted to test the feasibility of using micro transfer printing in novel application areas are presented

    Affordable flexible hybrid manipulator for miniaturised product assembly

    Get PDF
    Miniaturised assembly systems are capable of assembling parts of a few millimetres in size with an accuracy of a few micrometres. Reducing the size and the cost of such a system while increasing its flexibility and accuracy is a challenging issue. The introduction of hybrid manipulation, also called coarse/fine manipulation, within an assembly system is the solution investigated in this thesis. A micro-motion stage (MMS) is designed to be used as the fine positioning mechanism of the hybrid assembly system. MMSs often integrate compliant micro-motion stages (CMMSs) to achieve higher performances than the conventional MMSs. CMMSs are mechanisms that transmit an output force and displacement through the deformation of their structure. Although widely studied, the design and modelling techniques of these mechanisms still need to be improved and simplified. Firstly, the linear modelling of CMMSs is evaluated and two polymer prototypes are fabricated and characterised. It is found that polymer based designs have a low fabrication cost but not suitable for construction of a micro-assembly system. A simplified nonlinear model is then derived and integrated within an analytical model, allowing for the full characterisation of the CMMS in terms of stiffness and range of motion. An aluminium CMMS is fabricated based on the optimisation results from the analytical model and is integrated within an MMS. The MMS is controlled using dual-range positioning to achieve a low-cost positioning accuracy better than 2µm within a workspace of 4.4×4.4mm2. Finally, a hybrid manipulator is designed to assemble mobile-phone cameras and sensors automatically. A conventional robot manipulator is used to pick and place the parts in coarse mode while the aluminium CMMS based MMS is used for fine alignment of the parts. A high-resolution vision system is used to locate the parts on the substrate and to measure the relative position of the manipulator above MMS using a calibration grid with square patterns. The overall placement accuracy of the assembly system is ±24µm at 3σ and can reach 2µm, for a total cost of less than £50k, thus demonstrating the suitability of hybrid manipulation for desktop-size miniaturised assembly systems. The precision of the existing system could be significantly improved by making the manipulator stiffer (i.e. preloaded bearings…) and adjustable to compensate for misalignment. Further improvement could also be made on the calibration of the vision system. The system could be either scaled up or down using the same architecture while adapting the controllers to the scale.Engineering and Physical Sciences Research Council (EPSRC

    Computer Vision Measurements for Automated Microrobotic Paper Fiber Studies

    Get PDF
    The mechanical characterization of paper fibers and paper fiber bonds determines the key parameters affecting the mechanical properties of paper. Although bulk measurements from test sheets can give average values, they do not yield any real fiber-level data. The current, state-of-the-art methods for fiberlevel measurements are slow and laborious, requiring delicate manual handling of microscopic samples. There are commercial microrobotic actuators that allow automated or tele-operated manipulation of microscopic objects such as fibers, but it is challenging to acquire the data needed to guide such demanding manipulation. This thesis presents a solution to the illumination problem and computer vision algorithms for obtaining the required data. The solutions are designed for a microrobotic platform that comprises actuators for manipulating the fibers and one or two microscope cameras for visual feedback.The algorithms have been developed both for wet fibers, which can be treated as 2D objects, and for dry fibers and fiber bonds, which are treated as 3D objects. The major innovations in the algorithms are the rules for the micromanipulation of the curly fiber strands and the automated 3D measurements of microscale objects with random geometries. The solutions are validated by imaging and manipulation experiments with wet and dry paper fibers and dry paper fiber bonds. In the imaging experiments, the results are compared with the reference data obtained either from an experienced human or another imaging device. The results show that these solutions provide morphological data about the fibers which is accurate and precise enough to enable automated fiber manipulation. Although this thesis is focused on the manipulation of paper fibers and paper fiber bonds, both the illumination solution and the computer vision algorithms are applicable to other types of fibrous materials

    Robotic control of deformable continua and objects therein

    Get PDF

    Magnetically Driven Micro and Nanorobots

    Get PDF
    Manipulation and navigation of micro and nanoswimmers in different fluid environments can be achieved by chemicals, external fields, or even motile cells. Many researchers have selected magnetic fields as the active external actuation source based on the advantageous features of this actuation strategy such as remote and spatiotemporal control, fuel-free, high degree of reconfigurability, programmability, recyclability, and versatility. This review introduces fundamental concepts and advantages of magnetic micro/nanorobots (termed here as "MagRobots") as well as basic knowledge of magnetic fields and magnetic materials, setups for magnetic manipulation, magnetic field configurations, and symmetry-breaking strategies for effective movement. These concepts are discussed to describe the interactions between micro/nanorobots and magnetic fields. Actuation mechanisms of flagella-inspired MagRobots (i.e., corkscrew-like motion and traveling-wave locomotion/ciliary stroke motion) and surface walkers (i.e., surface-assisted motion), applications of magnetic fields in other propulsion approaches, and magnetic stimulation of micro/nanorobots beyond motion are provided followed by fabrication techniques for (quasi)spherical, helical, flexible, wire-like, and biohybrid MagRobots. Applications of MagRobots in targeted drug/gene delivery, cell manipulation, minimally invasive surgery, biopsy, biofilm disruption/eradication, imaging-guided delivery/therapy/surgery, pollution removal for environmental remediation, and (bio)sensing are also reviewed. Finally, current challenges and future perspectives for the development of magnetically powered miniaturized motors are discussed
    corecore