5,731 research outputs found

    Automata-based adaptive behavior for economic modeling using game theory

    Full text link
    In this paper, we deal with some specific domains of applications to game theory. This is one of the major class of models in the new approaches of modelling in the economic domain. For that, we use genetic automata which allow to buid adaptive strategies for the players. We explain how the automata-based formalism proposed - matrix representation of automata with multiplicities - allows to define a semi-distance between the strategy behaviors. With that tools, we are able to generate an automatic processus to compute emergent systems of entities whose behaviors are represented by these genetic automata

    Automata-based Adaptive Behavior for Economical Modelling Using Game Theory

    Full text link
    In this chapter, we deal with some specific domains of applications to game theory. This is one of the major class of models in the new approaches of modelling in the economic domain. For that, we use genetic automata which allow to build adaptive strategies for the players. We explain how the automata-based formalism proposed - matrix representation of automata with multiplicities - allows to define semi-distance between the strategy behaviors. With that tools, we are able to generate an automatic processus to compute emergent systems of entities whose behaviors are represented by these genetic automata

    Complex Systems: A Survey

    Full text link
    A complex system is a system composed of many interacting parts, often called agents, which displays collective behavior that does not follow trivially from the behaviors of the individual parts. Examples include condensed matter systems, ecosystems, stock markets and economies, biological evolution, and indeed the whole of human society. Substantial progress has been made in the quantitative understanding of complex systems, particularly since the 1980s, using a combination of basic theory, much of it derived from physics, and computer simulation. The subject is a broad one, drawing on techniques and ideas from a wide range of areas. Here I give a survey of the main themes and methods of complex systems science and an annotated bibliography of resources, ranging from classic papers to recent books and reviews.Comment: 10 page

    Learning to Respond: The Use of Heuristics in Dynamic Games

    Get PDF
    While many learning models have been proposed in the game theoretic literature to track individuals’ behavior, surprisingly little research has focused on how well these models describe human adaptation in changing dynamic environments. Analysis of human behavior demonstrates that people are often remarkably responsive to changes in their environment, on time scales ranging from millennia (evolution) to milliseconds (reflex). The goal of this paper is to evaluate several prominent learning models in light of a laboratory experiment on responsiveness in a lowinformation dynamic game subject to changes in its underlying structure. While history-dependent reinforcement learning models track convergence of play well in repeated games, it is shown that they are ill suited to these environments, in which sastisficing models accurately predict behavior. A further objective is to determine which heuristics, or “rules of thumb,” when incorporated into learning models, are responsible for accurately capturing responsiveness. Reference points and a particular type of experimentation are found to be important in both describing and predicting play.learning, limited information, dynamic games

    Learning to Reach Agreement in a Continuous Ultimatum Game

    Full text link
    It is well-known that acting in an individually rational manner, according to the principles of classical game theory, may lead to sub-optimal solutions in a class of problems named social dilemmas. In contrast, humans generally do not have much difficulty with social dilemmas, as they are able to balance personal benefit and group benefit. As agents in multi-agent systems are regularly confronted with social dilemmas, for instance in tasks such as resource allocation, these agents may benefit from the inclusion of mechanisms thought to facilitate human fairness. Although many of such mechanisms have already been implemented in a multi-agent systems context, their application is usually limited to rather abstract social dilemmas with a discrete set of available strategies (usually two). Given that many real-world examples of social dilemmas are actually continuous in nature, we extend this previous work to more general dilemmas, in which agents operate in a continuous strategy space. The social dilemma under study here is the well-known Ultimatum Game, in which an optimal solution is achieved if agents agree on a common strategy. We investigate whether a scale-free interaction network facilitates agents to reach agreement, especially in the presence of fixed-strategy agents that represent a desired (e.g. human) outcome. Moreover, we study the influence of rewiring in the interaction network. The agents are equipped with continuous-action learning automata and play a large number of random pairwise games in order to establish a common strategy. From our experiments, we may conclude that results obtained in discrete-strategy games can be generalized to continuous-strategy games to a certain extent: a scale-free interaction network structure allows agents to achieve agreement on a common strategy, and rewiring in the interaction network greatly enhances the agents ability to reach agreement. However, it also becomes clear that some alternative mechanisms, such as reputation and volunteering, have many subtleties involved and do not have convincing beneficial effects in the continuous case
    • …
    corecore