13 research outputs found

    Pure-Past Linear Temporal and Dynamic Logic on Finite Traces

    Get PDF
    LTLf and LDLf are well-known logics on finite traces. We review PLTLf and PLDLf, their pure- past versions. These are interpreted backward from the end of the trace towards the beginning. Because of this, we can exploit a foundational result on reverse languages to get an exponential improvement, wrt LTLf /LDLf, in computing the corresponding DFA. This exponential improvement is reflected in several forms sequential decision making involving temporal specifications, such as planning and decision problems in non-deterministic and non-Markovian domains. Interestingly, PLTLf (resp. PLDLf ) has the same expressive power as LTLf (resp. LDLf ), but transforming a PLTLf (resp. PLDLf ) formula into its equivalent in LTLf (resp. LDLf ) is quite expensive. Hence, to take advantage of the exponential improvement, properties of interest must be directly expressed in PLTLf /PLTLf

    Temporal Logic Monitoring Rewards via Transducers

    Get PDF
    In Markov Decision Processes (MDPs), rewards are assigned according to a function of the last state and action. This is often limiting, when the considered domain is not naturally Markovian, but becomes so after careful engineering of extended state space. The extended states record information from the past that is sufficient to assign rewards by looking just at the last state and action. Non-Markovian Reward Decision Processes (NRMDPs) extend MDPs by allowing for non-Markovian rewards, which depend on the history of states and actions. Non-Markovian rewards can be specified in temporal logics on finite traces such as LTLf/LDLf, with the great advantage of a higher abstraction and succinctness; they can then be automatically compiled into an MDP with an extended state space. We contribute to the techniques to handle temporal rewards and to the solutions to engineer them. We first present an approach to compiling temporal rewards which merges the formula automata into a single transducer, sometimes saving up to an exponential number of states. We then define monitoring rewards, which add a further level of abstraction to temporal rewards by adopting the four-valued conditions of runtime monitoring; we argue that our compilation technique allows for an efficient handling of monitoring rewards. Finally, we discuss application to reinforcement learning

    Model Checking Strategies from Synthesis Over Finite Traces

    Full text link
    The innovations in reactive synthesis from {\em Linear Temporal Logics over finite traces} (LTLf) will be amplified by the ability to verify the correctness of the strategies generated by LTLf synthesis tools. This motivates our work on {\em LTLf model checking}. LTLf model checking, however, is not straightforward. The strategies generated by LTLf synthesis may be represented using {\em terminating} transducers or {\em non-terminating} transducers where executions are of finite-but-unbounded length or infinite length, respectively. For synthesis, there is no evidence that one type of transducer is better than the other since they both demonstrate the same complexity and similar algorithms. In this work, we show that for model checking, the two types of transducers are fundamentally different. Our central result is that LTLf model checking of non-terminating transducers is \emph{exponentially harder} than that of terminating transducers. We show that the problems are EXPSPACE-complete and PSPACE-complete, respectively. Hence, considering the feasibility of verification, LTLf synthesis tools should synthesize terminating transducers. This is, to the best of our knowledge, the \emph{first} evidence to use one transducer over the other in LTLf synthesis.Comment: Accepted by ATVA 2

    Synthesizing strategies under expected and exceptional environment behaviors

    Get PDF
    We consider an agent that operates with two models of the environment: one that captures expected behaviors and one that captures additional exceptional behaviors. We study the problem of synthesizing agent strategies that enforce a goal against environments operating as expected while also making a best effort against exceptional environment behaviors. We formalize these concepts in the context of linear-temporal logic, and give an algorithm for solving this problem. We also show that there is no trade-off between enforcing the goal under the expected environment specification and making a best-effort for it under the exceptional one

    Towards a Unified View of AI Planning and Reactive Synthesis

    Get PDF
    International audienceAutomated planning and reactive synthesis are well-established techniques for sequential decision making. In this paper we examine a collection of AI planning problems with temporally extended goals, specified in Linear Temporal Logic (LTL). We characterize these so-called LTL planning problems as two-player games and thereby establish their correspondence to reactive synthesis problems. This unifying view furthers our understanding of the relationship between plan and program synthesis, establishing complexity results for LTL planning tasks. Building on this correspondence, we identify restricted fragments of LTL for which plan synthesis can be realized more efficiently

    LTLf Synthesis with Fairness and Stability Assumptions

    Get PDF
    In synthesis, assumptions are constraints on the environment that rule out certain environment behaviors. A key observation here is that even if we consider systems with LTLf goals on finite traces, environment assumptions need to be expressed over infinite traces, since accomplishing the agent goals may require an unbounded number of environment action. To solve synthesis with respect to finite-trace LTLf goals under infinite-trace assumptions, we could reduce the problem to LTL synthesis. Unfortunately, while synthesis in LTLf and in LTL have the same worst-case complexity (both 2EXPTIME-complete), the algorithms available for LTL synthesis are much more difficult in practice than those for LTLf synthesis. In this work we show that in interesting cases we can avoid such a detour to LTL synthesis and keep the simplicity of LTLf synthesis. Specifically, we develop a BDD-based fixpoint-based technique for handling basic forms of fairness and of stability assumptions. We show, empirically, that this technique performs much better than standard LTL synthesis

    Mimicking Behaviors in Separated Domains

    Get PDF
    Devising a strategy to make a system mimic behaviors from another system is a problem that naturally arises in many areas of Computer Science. In this work, we interpret this problem in the context of intelligent agents, from the perspective of LTLf , a formalism commonly used in AI for expressing finite-trace properties. Our model consists of two separated dynamic domains, DA and DB , and an LTLf specification that formalizes the notion of mimicking by mapping properties on behaviors (traces) of DA into properties on behaviors of DB . The goal is to synthesize a strategy that step-by-step maps every behavior of DA into a behavior of DB so that the specification is met. We consider several forms of mapping specifications, ranging from simple ones to full LTLf , and for each, we study synthesis algorithms and computational properties
    corecore