2,281 research outputs found

    Efficient CSL Model Checking Using Stratification

    Get PDF
    For continuous-time Markov chains, the model-checking problem with respect to continuous-time stochastic logic (CSL) has been introduced and shown to be decidable by Aziz, Sanwal, Singhal and Brayton in 1996. Their proof can be turned into an approximation algorithm with worse than exponential complexity. In 2000, Baier, Haverkort, Hermanns and Katoen presented an efficient polynomial-time approximation algorithm for the sublogic in which only binary until is allowed. In this paper, we propose such an efficient polynomial-time approximation algorithm for full CSL. The key to our method is the notion of stratified CTMCs with respect to the CSL property to be checked. On a stratified CTMC, the probability to satisfy a CSL path formula can be approximated by a transient analysis in polynomial time (using uniformization). We present a measure-preserving, linear-time and -space transformation of any CTMC into an equivalent, stratified one. This makes the present work the centerpiece of a broadly applicable full CSL model checker. Recently, the decision algorithm by Aziz et al. was shown to work only for stratified CTMCs. As an additional contribution, our measure-preserving transformation can be used to ensure the decidability for general CTMCs.Comment: 18 pages, preprint for LMCS. An extended abstract appeared in ICALP 201

    Extending the Logic IM-SPDL with Impulse and State Rewards

    Get PDF
    This report presents the logic SDRL (Stochastic Dynamic Reward Logic), an extension of the stochastic logic IM-SPDL, which supports the specication of complex performance and dependability requirements. SDRL extends IM-SPDL with the possibility to express impulse- and state reward measures.\ud The logic is interpreted over extended action-based Markov reward model (EMRM), i.e. transition systems containing both immediate and Markovian transitions, where additionally the states and transitions can be enriched with rewards.\ud We define ne the syntax and semantics of the new logic and show that SDRL provides powerful means to specify path-based properties with timing and reward-based restrictions.\ud In general, paths can be characterised by regular expressions, also called programs, where the executability of a program may depend on the validity of test formulae. For the model checking of SDRL time- and reward-bounded path formulae, a deterministic program automaton is constructed from the requirement. Afterwards the product transition\ud system between this automaton and the EMRM is built and subsequently transformed into a continuous time Markov reward model (MRM) on which numerical\ud analysis is performed.\u

    A model checker for performance and dependability properties

    Get PDF
    Markov chains are widely used in the context of performance and reliability evaluation of systems of various nature. Model checking of such chains with respect to a given (branching) temporal logic formula has been proposed for both the discrete [8] and the continuous time setting [1], [3]. In this short paper, we describe the prototype model checker EMC2E \vdash M C^2 for discrete and continuous-time Markov chains, where properties are expressed in appropriate extensions of CTL.We illustrate the general benefits of this approach and discuss the structure of the tool

    Quantitative Verification: Formal Guarantees for Timeliness, Reliability and Performance

    Get PDF
    Computerised systems appear in almost all aspects of our daily lives, often in safety-critical scenarios such as embedded control systems in cars and aircraft or medical devices such as pacemakers and sensors. We are thus increasingly reliant on these systems working correctly, despite often operating in unpredictable or unreliable environments. Designers of such devices need ways to guarantee that they will operate in a reliable and efficient manner. Quantitative verification is a technique for analysing quantitative aspects of a system's design, such as timeliness, reliability or performance. It applies formal methods, based on a rigorous analysis of a mathematical model of the system, to automatically prove certain precisely specified properties, e.g. ``the airbag will always deploy within 20 milliseconds after a crash'' or ``the probability of both sensors failing simultaneously is less than 0.001''. The ability to formally guarantee quantitative properties of this kind is beneficial across a wide range of application domains. For example, in safety-critical systems, it may be essential to establish credible bounds on the probability with which certain failures or combinations of failures can occur. In embedded control systems, it is often important to comply with strict constraints on timing or resources. More generally, being able to derive guarantees on precisely specified levels of performance or efficiency is a valuable tool in the design of, for example, wireless networking protocols, robotic systems or power management algorithms, to name but a few. This report gives a short introduction to quantitative verification, focusing in particular on a widely used technique called model checking, and its generalisation to the analysis of quantitative aspects of a system such as timing, probabilistic behaviour or resource usage. The intended audience is industrial designers and developers of systems such as those highlighted above who could benefit from the application of quantitative verification,but lack expertise in formal verification or modelling

    Model Checking Markov Chains with Actions and State Labels

    Get PDF
    In the past, logics of several kinds have been proposed for reasoning about discrete- or continuous-time Markov chains. Most of these logics rely on either state labels (atomic propositions) or on transition labels (actions). However, in several applications it is useful to reason about both state-properties and action-sequences. For this purpose, we introduce the logic asCSL which provides powerful means to characterize execution paths of Markov chains with actions and state labels. asCSL can be regarded as an extension of the purely state-based logic asCSL (continuous stochastic logic). \ud In asCSL, path properties are characterized by regular expressions over actions and state-formulas. Thus, the truth value of path-formulas does not only depend on the available actions in a given time interval, but also on the validity of certain state formulas in intermediate states.\ud We compare the expressive power of CSL and asCSL and show that even the state-based fragment of asCSL is strictly more expressive than CSL if time intervals starting at zero are employed. Using an automaton-based technique, an asCSL formula and a Markov chain with actions and state labels are combined into a product Markov chain. For time intervals starting at zero we establish a reduction of the model checking problem for asCSL to CSL model checking on this product Markov chain. The usefulness of our approach is illustrated by through an elaborate model of a scalable cellular communication system for which several properties are formalized by means of asCSL-formulas, and checked using the new procedure

    A tool for model-checking Markov chains

    Get PDF
    Markov chains are widely used in the context of the performance and reliability modeling of various systems. Model checking of such chains with respect to a given (branching) temporal logic formula has been proposed for both discrete [34, 10] and continuous time settings [7, 12]. In this paper, we describe a prototype model checker for discrete and continuous-time Markov chains, the Erlangen-Twente Markov Chain Checker EÎMC2, where properties are expressed in appropriate extensions of CTL. We illustrate the general benefits of this approach and discuss the structure of the tool. Furthermore, we report on successful applications of the tool to some examples, highlighting lessons learned during the development and application of EÎMC2

    A probabilistic model checking approach to analysing reliability, availability, and maintainability of a single satellite system

    Get PDF
    Satellites now form a core component for space based systems such as GPS and GLONAS which provide location and timing information for a variety of uses. Such satellites are designed to operate in-orbit and have lifetimes of 10 years or more. Reliability, availability and maintainability (RAM) analysis of these systems has been indispensable in the design phase of satellites in order to achieve minimum failures or to increase mean time between failures (MTBF) and thus to plan maintainability strategies, optimise reliability and maximise availability. In this paper, we present formal modelling of a single satellite and logical specification of its reliability, availability and maintainability properties. The probabilistic model checker PRISM has been used to perform automated quantitative analyses of these properties

    Verifying collision avoidance behaviours for unmanned surface vehicles using probabilistic model checking

    Get PDF
    Collision avoidance is an essential safety requirement for unmanned surface vehicles (USVs). Normally, its practical verification is non-trivial, due to the stochastic behaviours of both the USVs and the intruders. This paper presents the probabilistic timed automata (PTAs) based formalism for three collision avoidance behaviours of USVs in uncertain dynamic environments, which are associated with the crossing situation in COLREGs. Steering right, acceleration, and deceleration are considered potential evasive manoeuvres. The state-of-the-art prism model checker is applied to analyse the underlying models. This work provides a framework and practical application of the probabilistic model checking for decision making in collision avoidance for USVs

    Dependability checking with StoCharts: Is train radio reliable enough for trains?

    Get PDF
    Performance, dependability and quality of service (QoS) are prime aspects of the UML modelling domain. To capture these aspects effectively in the design phase, we have recently proposed STOCHARTS, a conservative extension of UML statechart diagrams. In this paper, we apply the STOCHART formalism to a safety critical design problem. We model a part of the European Train Control System specification, focusing on the risks of wireless communication failures in future high-speed cross-European trains. Stochastic model checking with the model checker PROVER enables us to derive constraints under which the central quality requirements are satisfied by the STOCHART model. The paper illustrates the flexibility and maturity of STOCHARTS to model real problems in safety critical system design
    corecore