1,875 research outputs found

    A Quasi-Linear Time Algorithm Deciding Whether Weak B\"uchi Automata Reading Vectors of Reals Recognize Saturated Languages

    Full text link
    This work considers weak deterministic B\"uchi automata reading encodings of non-negative dd-vectors of reals in a fixed base. A saturated language is a language which contains all encoding of elements belonging to a set of dd-vectors of reals. A Real Vector Automaton is an automaton which recognizes a saturated language. It is explained how to decide in quasi-linear time whether a minimal weak deterministic B\"uchi automaton is a Real Vector Automaton. The problem is solved both for the two standard encodings of vectors of numbers: the sequential encoding and the parallel encoding. This algorithm runs in linear time for minimal weak B\"uchi automata accepting set of reals. Finally, the same problem is also solved for parallel encoding of automata reading vectors of relative reals

    On the Sets of Real Numbers Recognized by Finite Automata in Multiple Bases

    Full text link
    This article studies the expressive power of finite automata recognizing sets of real numbers encoded in positional notation. We consider Muller automata as well as the restricted class of weak deterministic automata, used as symbolic set representations in actual applications. In previous work, it has been established that the sets of numbers that are recognizable by weak deterministic automata in two bases that do not share the same set of prime factors are exactly those that are definable in the first order additive theory of real and integer numbers. This result extends Cobham's theorem, which characterizes the sets of integer numbers that are recognizable by finite automata in multiple bases. In this article, we first generalize this result to multiplicatively independent bases, which brings it closer to the original statement of Cobham's theorem. Then, we study the sets of reals recognizable by Muller automata in two bases. We show with a counterexample that, in this setting, Cobham's theorem does not generalize to multiplicatively independent bases. Finally, we prove that the sets of reals that are recognizable by Muller automata in two bases that do not share the same set of prime factors are exactly those definable in the first order additive theory of real and integer numbers. These sets are thus also recognizable by weak deterministic automata. This result leads to a precise characterization of the sets of real numbers that are recognizable in multiple bases, and provides a theoretical justification to the use of weak automata as symbolic representations of sets.Comment: 17 page

    Near-Optimal Complexity Bounds for Fragments of the Skolem Problem

    Get PDF
    Given a linear recurrence sequence (LRS), specified using the initial conditions and the recurrence relation, the Skolem problem asks if zero ever occurs in the infinite sequence generated by the LRS. Despite active research over last few decades, its decidability is known only for a few restricted subclasses, by either restricting the order of the LRS (upto 4) or by restricting the structure of the LRS (e.g., roots of its characteristic polynomial). In this paper, we identify a subclass of LRS of arbitrary order for which the Skolem problem is easy, namely LRS all of whose characteristic roots are (possibly complex) roots of real algebraic numbers, i.e., roots satisfying x^d = r for r real algebraic. We show that for this subclass, the Skolem problem can be solved in NP^RP. As a byproduct, we implicitly obtain effective bounds on the zero set of the LRS for this subclass. While prior works in this area often exploit deep results from algebraic and transcendental number theory to get such effective results, our techniques are primarily algorithmic and use linear algebra and Galois theory. We also complement our upper bounds with a NP lower bound for the Skolem problem via a new direct reduction from 3-CNF-SAT, matching the best known lower bounds

    Approximated Symbolic Computations over Hybrid Automata

    Get PDF
    Hybrid automata are a natural framework for modeling and analyzing systems which exhibit a mixed discrete continuous behaviour. However, the standard operational semantics defined over such models implicitly assume perfect knowledge of the real systems and infinite precision measurements. Such assumptions are not only unrealistic, but often lead to the construction of misleading models. For these reasons we believe that it is necessary to introduce more flexible semantics able to manage with noise, partial information, and finite precision instruments. In particular, in this paper we integrate in a single framework based on approximated semantics different over and under-approximation techniques for hybrid automata. Our framework allows to both compare, mix, and generalize such techniques obtaining different approximated reachability algorithms.Comment: In Proceedings HAS 2013, arXiv:1308.490

    Computing Probabilistic Bisimilarity Distances for Probabilistic Automata

    Get PDF
    The probabilistic bisimilarity distance of Deng et al. has been proposed as a robust quantitative generalization of Segala and Lynch's probabilistic bisimilarity for probabilistic automata. In this paper, we present a characterization of the bisimilarity distance as the solution of a simple stochastic game. The characterization gives us an algorithm to compute the distances by applying Condon's simple policy iteration on these games. The correctness of Condon's approach, however, relies on the assumption that the games are stopping. Our games may be non-stopping in general, yet we are able to prove termination for this extended class of games. Already other algorithms have been proposed in the literature to compute these distances, with complexity in UP∩coUP\textbf{UP} \cap \textbf{coUP} and \textbf{PPAD}. Despite the theoretical relevance, these algorithms are inefficient in practice. To the best of our knowledge, our algorithm is the first practical solution. The characterization of the probabilistic bisimilarity distance mentioned above crucially uses a dual presentation of the Hausdorff distance due to M\'emoli. As an additional contribution, in this paper we show that M\'emoli's result can be used also to prove that the bisimilarity distance bounds the difference in the maximal (or minimal) probability of two states to satisfying arbitrary ω\omega-regular properties, expressed, eg., as LTL formulas

    Real Hypercomputation and Continuity

    Full text link
    By the sometimes so-called 'Main Theorem' of Recursive Analysis, every computable real function is necessarily continuous. We wonder whether and which kinds of HYPERcomputation allow for the effective evaluation of also discontinuous f:R->R. More precisely the present work considers the following three super-Turing notions of real function computability: * relativized computation; specifically given oracle access to the Halting Problem 0' or its jump 0''; * encoding real input x and/or output y=f(x) in weaker ways also related to the Arithmetic Hierarchy; * non-deterministic computation. It turns out that any f:R->R computable in the first or second sense is still necessarily continuous whereas the third type of hypercomputation does provide the required power to evaluate for instance the discontinuous sign function.Comment: previous version (extended abstract) has appeared in pp.562-571 of "Proc. 1st Conference on Computability in Europe" (CiE'05), Springer LNCS vol.352

    The complexity of linear-time temporal logic over the class of ordinals

    Full text link
    We consider the temporal logic with since and until modalities. This temporal logic is expressively equivalent over the class of ordinals to first-order logic by Kamp's theorem. We show that it has a PSPACE-complete satisfiability problem over the class of ordinals. Among the consequences of our proof, we show that given the code of some countable ordinal alpha and a formula, we can decide in PSPACE whether the formula has a model over alpha. In order to show these results, we introduce a class of simple ordinal automata, as expressive as B\"uchi ordinal automata. The PSPACE upper bound for the satisfiability problem of the temporal logic is obtained through a reduction to the nonemptiness problem for the simple ordinal automata.Comment: Accepted for publication in LMC
    • …
    corecore